h EARTIHPEOPLE

TECHNOLOGY

Analog Monitor Project User Manual

EARTH PEOPLE TECHNOLOGY, Inc

ANALOG MONITOR PROJECT FOR THE ARDUINO UNO
User Manual

Analeg Monitor

EPT USE <> Seral&JTAG Cable B~
Device Connected
Menitor 1 Monitar 2 Monitor 3
586 539 272
Monitor 4 Monitar 5 Monitor &
267 267 674
o

The Analog Monitor Project is designed for EPT USB CPLD Development System. It
samples all six of the analog inputs of the Arduino Uno and displays each of the values
on the PC in real time.

Circuit designs, software and documentation are copyright © 2012-2013, Earth People
Technology, Inc

Microsoft and Windows are both registered trademarks of Microsoft Corporation.
Altera is a trademark of the Altera Corporation. All other trademarks referenced herein
are the property of their respective owners and no trademark rights to the same are
claimed.

Page 1

A EARTIHPEOPLE

TECHNOLOGY

Analog Monitor Project User Manual

Table of Contents

1 Analog Monitor Project INtrodUCION...........ccviieiieiicc e 4
1.1 Driver INStAHALION........ccoviiiiieiieie e e 4
1.2 Software INSTallatioNn...........ccccoiiiiiiiiiiee s 5
1.3 ACHIVE HOSt ENATEIMS ..ottt e 5
1.4 Active Transfer Library ENATErMSccooooiiieiicie e 6

2 The DevelOpmEeNt PrOCESS.......coiiiiiiiiieiieieiee st 7
2.1 Designing a Simple Analog Monitor Projectcccevvveviiieiecie e 8
2.2 Analog Monitor Project Equipment Neededcoovrieieienencninencseeeee, 8
2.3 Analog Monitor Data FIOWcccccveiiiiiiicic e 9

3 Arduino Analog Monitor COUEuiiiiiiiieie e 11

Create Data SAMPIETcveivieiiccce e 11
K T PSSR 11
3.1.1 Select I/O’s for Fast Throughput on Arduinocccceevvviiiiiniiiiiiiennnn 11
3.1.2 Control Signals for the Analog MONItOrccovvvieiiieneiceee, 13
3.2 Coding the Arduino Analog MONILOrccccoveiieiieiieccee e 15
3.3 Building Arduino PrOJECTcciiiiiiiiiiieiee s 20
3.4 Programming the ArduiNO..........ccceiiiiiiiie i 23

4 CPLD Active Transfer EndTerms Coding.........ccocuviiiririiiiiieiesc e 25
4.1 Define the USer DESIGN.cc.ciieiiieiiiicite ettt 25
4.2 Select the INPUL/OULPULSoouiiiiiieiiee s 27
4.3 Registers and Parameters..........ccccciiieiiiie it 29
A4 ASSIGNIMENTS ..ot b bbb nes 32
45 RESEE CIICUIT...ecuiiiiiieecie ettt nes 32
4.6 INPUE REGISTEIS....uiiiiiieeeite ettt bbb 33
4.7 Start/Stop and Write Enable detectioncccoevieieiie e 34
4.8 ENATErmM SEIECHIONccueeiiiie ettt nne s 36
4.9 Upper/Lower Byte SEleCtiONccoeiiiiiiiiicsic e 38
410 Transfer Control Register State Machineccccoovveieneneni i 40
411 USB Transfer State Machingcoccoiiiiieiii e 43
4.12 ENdTerm INStantiationcccveverieiiieie e 46
4.13 Compile/Synthesize the Project..........ccceiveeiieiii i 50
4.14 SYNENESIZING ...t 54
4.15 Program the CPLD........c.cooiiiii et 57

5 PC: CHPIOJECT DESIGN ..ottt 61
5.1 Coding the CH# PrOJECtcveciuiiiiecie ettt 62

CH# ProjJeCt CreatioNccveieierieiiesieeieeee et 62
TS 0 TP PSRR 62
5.1.2 C# Project ENVIronmMent SEtUP........cccvveeieerieiierir e ceesie e se e 65
5.1.3 C# Object INItializationccoooeiieiiiieiiee e 70
5.1.4 CH Project LIStDEVICES.......ceieiieireiesiesieesiesieste e e e eeesee e snaenee e 70
5.1.5 CHProject Open DEVICE......cccceiieiieriiiieieeie et 72

Page 2

EARTHHPEOIPLE

TECHNOLOGY

Analog Monitor Project User Manual

5.1.6 C# Project Callback INitializationcccooeiiiiiiniieicre e, 73
5.1.7 CHProject CoNtrolS........ccciveiiiiieiieii s 74
5.1.8 CHPIOJECt BULIONS ... 75
5.1.9 C# Project EPTReadFunction Callback............cccccovveiiiieiiiiecc e, 81
5.1.10 C# Project Scale Factor SEleCtioNccccoveririiinieicee e, 91
5.1.11 C# Project COMPIELION.......cccoiiiiiiee et 95

5.2 PC: Compiling the Active Host Applicationcccovevieieieiencicseceeeee 95

6 Connecting the Project TOGEther........ccooviiiie i 97
6.1 TeSting the PrOJECT.......coviiieiii st 100

Page 3

TECHNOLOGY

Analog Monitor Project User Manual

1 Analog Monitor Project Introduction

The Analog Monitor Project uses the Earth People Technology USB-CPLD
development system hardware and the Arduino Uno connected to a Windows PC. The
project software uses the Microsoft C# Express in conjunction with the Active Host dlI.
THE EARTH PEOPLE TECHNOLOGY USB-PLD
DEVELOPMENT SYSTEM

ACTIVE HOST
COMMUNICATES

ACTIVE HOST SDK WITH CPLD USING EPT-570-AP
e ENDTERMS

™

ARDUINO

ACTIVE TRANSFER
LIBRARY ARDUINO CODE
USERS CPLD CODE USERS CODE
COMMUNICATES COMMUNICAES
WITH HOST USING WITH CPLD

ENDTERMS

This User Manual will guide the user to create the Arduino code that will sample each
of the Analog inputs and transfer the digitally converted sample to the CPLD. The user
will be given instructions on creating the CPLD code that accepts each sample from the
Arduino and transmits it via USB to the PC. The manual completes with instruction of
how to create the C# application that will decode each sample and display on the screen
along with the other five analog input samples.

This is an advanced project and not for beginners to the Arduino family. However, it
does serve as an introduction to advanced programming techniques using Verilog for
programming the CPLD and C# for programming the user interface on the PC. The first
two sections provide a background for the PC and CPLD libraries.

1.1 Driver Installation

Follow the instructions in the EPT USB CPLD Development System User Manual to
install all of the software and drivers for use with the hardware.

Page 4

EARTHHPEOIPLE

TECHNOLOGY

Analog Monitor Project User Manual

File Action View Help
&= | 7B B 8 E&S

4 = HP-DeskTop-3005
1M Computer
a Disk drives
& Display adapters
. DVD/CD-ROM drives
g IDE ATA/ATAPI controllers
& Monitors
¥ Network adapters
7% Ports (COM & LPT)
I3 Processors
4% Sound, video and game controllers
/M System devices

4§ Universal Serial Bus controllers

Standard Enhanced PCI to USB Host Controller
Standard Enhanced PCI to USB Host Controller
Standard OpenHCD USB Host Controller
Standard OpenHCD USB Host Controller

USB Composite Device

USB Root Hub

USB Root Hub

USB Root Hub

USB Root Hub

USB Serial Converter A

USB Serial Converter B

sleeeeceececaw

If the driver has been installed correctly, you can go to the Device Manager and click on
the Universal Serial Bus controllers and see “USB Serial Converter A” and “USB Serial
Converter B”.

1.2 Software Installation
Follow the the instructions in the EPT USB CPLD Development System User Manual
to install the following software:

e Altera Quartus Il

e Microsoft C# Express

e Arduino Wiring IDE

1.3 Active Host EndTerms

The Active Host SDK is provided as a dll which easily interfaces to application
software written in C#, C++ or C. It runs on the PC and provides transparent connection

C#t WINDOWS FORM

HOST APPICATION EPMS570 CPLD
USER APPLICATION TRIGGER
ENDTERM i ACTIVE TRIGGER ENDTERM USERICODE
TRANSFER

LIBRARY

ACTIVE
C++ CONSOLE TRANSFER)\ USB /1__;\
C CONSOLE ENDTERM HDOLSLT 7| DRIVER USB BUS TRANSFER ENDTERM

= =

from PC application code through the USB driver to the user CPLD code. The user code
connects to “Endterms” in the Active Host dll. These Host “Endterms” have

Page 5

~ 8BITDATABUS

6 BIT CONTROL BUS
BLOCK ENDTERM t BLOCK ENDTERM S

ARDUINO

% EARTIHPEOPRPLE

TECHNOLOGY
Analog Monitor Project User Manual

complementary HDL “Endterms” in the Active Transfer Library. Users have seamless
bi-directional communications at their disposal in the form of:

e Trigger Endterm
e Transfer Endterm
e Block Endterm

User code writes to the Endterms as function calls. Just include the address of the
individual module (there are eight individually addressable modules of each Endterm).
Immediately after writing to the selected Endterm, the value is received at the HDL
Endterm in the CPLD.

Receiving data from the CPLD is made simple by Active Host. Active Host transfers
data from the CPLD as soon as it is available. It stores the transferred data into circular
buffer. When the transfer is complete, Active Host invokes a callback function which is
registered in the users application. This callback function provides a mechanism to
transparently receive data from the CPLD. The user application does not need to
schedule a read from the USB or call any blocking threads.

1.4 Active Transfer Library EndTerms

The Active Transfer Library is a portfolio of HDL modules that provides an easy to use
yet powerful USB transfer mechanism. The user HDL code communicates with
EndTerms in the form of modules. These EndTerm modules are commensurate with the
Active Host EndTerms. There are three types of EndTerms in the Active Transfer
Library:

e Trigger Endterm

e Transfer Endterm

e Block Endterm
They each have a simple interface that the user HDL code can use to send or receive
data across the USB. Writing to an EndTerm will cause the data to immediately arrive

Page 6

\ EARTHPEOPLE

' TECHNOLOGY

Analog Monitor Project User Manual

TRIGGER ENDTERM

ACTIVE TRANSFER SINGLE TRANSFER
LIBRARY ENDTERM USER CORE

BLOCK ENDTERM

at the commensurate EndTerm in the Active Host/user application. The transfer through
the USB is transparent. User HDL code doesn’t need to set up Endpoints or respond to
Host initiated data requests. The whole process is easy yet powerful.

2 The Development Process

The development of the Analog Monitor Project starts with the Arduino. The user will
write the code to sample each Analog input using the 10 bit ADC, then assert the write
enable which initiates the read cycle on the EPT-570-AP board. The user will write the
Verilog code for the CPLD which stores each sample from the Arduino board, then

i i

Page 7

EARTHHPEOIPLE

TECHNOLOGY

Analog Monitor Project User Manual

initiates the write cycle to PC. Finally, the user will write the C# code to accept each
byte from the EPT-570-AP board and assemble the bytes into the original 10 bit word
and display it in the requisite textbox in a Windows Form.

2.1 Designing a Simple Analog Monitor Project

The Analog Monitor is an advanced project and not for beginners to the Arduino
family. However, it does serve as an introduction to advanced programming techniques
using Verilog for programming the CPLD and C# for programming the user interface
on the PC. The user should be familiar with the beginners projects for the Arduino Uno.
For an introduction to Verilog, go to:

www.asic-world.com/verilog/introl.html#Introduction

For an introduction to C#, go to:

http://www.homeandlearn.co.uk/csharp/csharp.html

2.2 Analog Monitor Project Equipment Needed
The equipment you will need for the Analog Monitor project is

EARTH PEOPLE TECHNOLOGY EPT-570-AP-U2

ARDUINOUNO

% USE MINIB CABLE . USB TYPE B CABLE
-

5
% 6 PIN 2.54 MM HEADER

10 PIN 2.54 MM HEADER

Page 8

http://www.asic-world.com/verilog/intro1.html#Introduction
http://www.homeandlearn.co.uk/csharp/csharp.html

EARTHHPEOIPLE

TECHNOLOGY

Analog Monitor Project User Manual

SIX 5 VOLT DC POWER SUPPLIES

SIX PAIR OF BANANA CLIP LEADS

Earth People Technology EPT-570-AP-U2 board
Arduino Uno Board

PC running Windows 7 or equivalent, with 2 USB ports
USB cable Type B

USB cable Type Mini B

6 pin 2.54 mm Male Header

10 pin 2.54 mm Male Header

12 inches of 18 guage Wire

1 to 6 5VDC Power Supplies

Six 1 to 2 Foot Red Banana to Clip Leads

One 1 to 2 Foot Black Banana to Clip Lead

Five Six Inch Red Banana to Banana Lead

Five Six Inch Black Banana to Banana Lead

2.3 Analog Monitor Data Flow

The data flow for the Analog Monitor project is shown below. The Arduino initializes
its ports and variables then enters the main loop() function. In the main loop, each
analog channel is converted into a 10 bit word. The digitized value is set on the PORT
B & D pins. Next, the EndTerm address is set and the Write Enable signal is asserted.
The next instruction de-asserts the Write Enable and the next analog channel goes
through the same process. At the end of the loop, all six channels have been digitized
and the data sent to the CPLD

Page 9

PEOIPLE

OLOGY

Analog Monitor Project User Manual

ARDUINO FUNCTIONALITY EPT-570-AP FUNCTIONALITY C# WINDOW FUNCTIONALITY
Initiate Ports and Variables Wait for Start_Stop Control to be Asserted from Analog Monitor Initialize Variables, Controls, Events, Read Callback
PORTSB&D Window Function
10 BIT VALUE
Enter Loop —l/ OWait for Write Enable to Assert USB TRANSFER Select EPT-570-AP Device
Read ADC Channel O \ V
ENDTERM ADDRESS
Set Ports B & D to 10 bit Value » Send Start Control to EPT-570-AP Device
Assert EndTerm Address 1 WEITE ENABLE
Assert Write Enable " OWait for Read Callback Even
Clear Variables
ADDRESS SELECTION
Read ADC Channel 1 BYTE SELECTION
S B LI READ UPPER BYTE FROM TRANSFER ENDTERM
Assert EndTerm Address 2
Assert Write Enable READ LOWER BYTE FROM TRANSFER ENDTERM
Clear Variables
UPDATE TEXTEOX WITH 10 BIT ADC VALUE
Repeat for Channel 2,3,4
Read ADC Channel 5
Set Ports B & D to 10 bit Value
Assert EndTerm Address &
Assert Write Enable
Clear Variables ADDRESS SELECTION
BYTE SELECTION
e e (o WRITE UPPER BYTE TO TRANSFER ENDTERM
WRITE LOWER BYTE TO TRANSFER ENDTERM

The CPLD does not need any initialization as the device is ready to operate soon after the power
is applied. The data flow in the EPT-570-AP starts with a wait loop for the Start_Stop_Control
signal to be asserted from the Control Register. Once this happens, the data flow will fall into the
wait loop for the Write Enable. When the Write Enable asserts, the State Machine leaves the
IDLE state and enters the START_TRANSFER state. In this state the EndTerm address will be
selected and the 10 bit digitized value is stored locally. The state machine will immediately
enter the FIRST_BYTE_EN state and initiate the lower byte (of the digitized value) transfer
across the USB. This state will wait for this first byte to be accepted by the Active Transfer
Library. Next, the FIRST_BYTE_RDY state is entered. In this state, the state machine will wait
for the Active Transfer Library to complete the transfer. Next, the upper byte of the digitized
value is transmitted across the USB in the same way as the lower byte in the
SECOND_BYTE_EN and SECOND_BYTE_RDY states. When the upper byte transfer is
complete, the state machine goes back into the IDLE state. The data flow waits in a loop for the
Write Enable to assert again and start the process again.

The C# data flow on the PC starts with the initialization of variables, controls, events, and read
callback functions. The Windows Form is displayed on the PC and the system registry is scanned
for any Earth People Technology devices. Any devices that are found are added to the drop down
box. The user must then select the available EPT device and click the Open control. This will
select the device and allocate all memory needed for the Active Host EndTerms. Next, the user
must click on the Start button. Clicking this button will send the control register value to the
EPT-570-AP board. This value is sent in a message. The CPLD Control Register State Machine
will decode this message and read the control register and assert the Start_Stop_Control signal.
Once this signal is asserted, the CPLD will send the lower byte and upper byte messages to the

Page
10

h EARTIHPEOPLE

TECHNOLOGY

Analog Monitor Project User Manual

Active Host EndTerms. When bytes are received, the read callback function is called. The read
callback will call the EPTParseReceive() function which calls the TransferOutReceive()
function. In this function, the EndTerm address is selected and the upper byte is stored in the
upper portion of a local variable. The next time the TransferOutReceive() is called, from the read
callback, the EndTerm is selected and the lower byte is stored into the local variable. At this
point the full digitized value is transferred from the CPLD EndTerm and is ready for display.
The textbox is selected by the EndTerm address and is updated with the collected digitized value.
The cycle repeats until the Stop button is pressed.

3 Arduino Analog Monitor Code

The first order of business is to layout the design. Start with the Arduino, and create a
simple analog signal sampler using the “analogRead()” function. Send the sampled
analog signal to the EPT-570_AP board using an address and an enable signal.

3.1 Select 1/0’s for Fast Throughput on Arduino

PORTD is an 8 bit port that is used to connect the lower 8 bits of the sample to the input

of the EPT-570-AP. Bits 8 and 9 of the sample are connected to bits 4 and 5 of PORTB.

The address for the EndTerms is three bits and occupies bits 1, 2 and 3 of PORTB.

There is also a one bit control line which will be used to inform the CPLD that a byte is

ready to be written to the USB. This is bit 0 of PORTB.

LB_IOL[7:0]

PORTE PORTD LB IOH[4:0
SR LB_SER[1]
Arduino Uno A
L
! PREEET SoRRs
Arduino Uno EPT-570-AP
Signal Port Pin | Connector Connector | Pin Port Signal
ADC D 7t00 IOL J8 7to0 | LB_IOL | analog_monitor_
Bits7t0 0 lower byte
ADC Bit9 B 5 IOH Connects J10 4 LB _IOH | analog_monitor_
To upper_byte(1)
ADC Bit 8 B 4 IOH J10 1 LB _SER | analog_monitor_
upper_byte(0)
EndTerm B 3 IOH J10 3 LB_IOH | analog_monitor_
Address Bit 2 address(2)
EndTerm B 2 IOH J10 2 LB _IOH | analog_monitor
Page

11

EARTHHPEOIPLE

TECHNOLOGY

Analog Monitor Project User Manual

Address Bit 1 address(1)
EndTerm B 1 IOH J10 1 LB _IOH | analog_monitor_
Address Bit 0 address(0)
Write Enable B 0 IOH J10 0 LB _IOH | analog_monitor_
en

Each port on the Arduino is controlled by three registers, which are also defined
variables in the Arduino language. The DDR register, determines whether the pin is an
INPUT or OUTPUT. The PORT register controls whether the pin is HIGH or LOW,
and the PIN register reads the state of INPUT pins set to input with pinMode(). The
maps of the ATmega328 chips show the ports.

DDR and PORT registers may be both written to, and read. PIN registers correspond to
the state of inputs and may only be read.

PORTD maps to Arduino digital pins 0 to 7

DDRD - The Port D Data Direction Register - read/write
PORTD - The Port D Data Register - read/write
PIND - The Port D Input Pins Register - read only

The ports and pins for the Analog Monitor Project project must be initialized in the
setup() function. The setup function will only run once, after each powerup or reset of
the Arduino board.

void setup ()

{
DDED = B11111111; //%et Fort D as outputs

PORTD &= EBE11111111; //Turn on FPort I pins

DDEE = BOOL111111: //%et Port B az outputs
PORTE &= BOOOOQOOOOp //Turn on FPort B pins

After the setup() function executes, the Arduino will enter the Loop() function and start
to perform the reading of the analog signals. And the PORTB bit 0 pin will be used to
latch the value on PORTD and PORTB pins into the CPLD.

Page

12

2 EARTIHPEOPRPLE

TECHNOLOGY

Analog Monitor Project User Manual

3.1 Create Data Sampler

The analogRead() function is called to convert the analog signal on the given pin into a
10 bit digital word. The selections for the pin range from 0 to 5 for a total of six analog
inputs. These analog inputs are accessible from the AD connector on the UNO.

6
O

28 ANK/SC) I 5
giggi;ﬁgi 27 Ana/snAa [48
(ADC3)PC3 gg A3 | | 30
(ADC2)PC2 [—£3 AD2 | =0
(ADC1)PC1 |22 an1 | O

(ADCO)PCO0) =11 ==

Calling the function analogRead(0) will convert the analog signal on the ADO net into a
10 bit digital word. This word will be stored in a local variable in the Arduino code.

Initiate Ports and Variables
PORTSB&D

10 BIT VALUE

Enter Loop
Read ADC Channel O
ENDTERM ADDRESS
Set Ports B & D to 10 bit Value >
Assert EndTerm Address 1 WRITE ENABLE
>

Assert Write Enable
Clear Write Enable

The next section will show the transmission of this value to the EPT-570-AP board.
Note that the ADC output can be selected to be either 8 bits or 10 bits. The ADLAR bit
in the ADMUX register will select if 10 bit or 8 bit precision is used. The ADC defaults
to 10 bit precision.

3.1.1 Control Signals for the Analog Monitor

The 10 bit digitized value from the analogRead() function is applied to the PORT B &
D pins. We will focus on keeping things fast on the Arduino. In order to do this, we will
use the port write function to transmit the sample to the EPT-570-AP.

Initiate Ports and Variables

PORTSB&D
10 BIT VALUE
Enter Loop
Read ADC Channel O
ENDTERM ADDRESS
Set Ports B & D to 10 bit Value |
Assert EndTerm Address 1 WRITE ENABLE

Assert Write Enable
Clear Write Enable

Page

13

8 EARTIHPEOPLE
7 T E C N

H OLOGY

Analog Monitor Project User Manual

Using port writes is faster than using the built in functions in Arduino Processing. We
will use the port write to transfer the 10 bit ADC sample and use it to set the address for
the Active Transfer Library EndTerm and for the write enable.

S Bead Lnalog Signal O
AdeValue = analogRead (0) ;
PCORTD = AdcValue;

UpperfAdcValue = (AdcValue & 0x0300)>>4;

Here, notice that the PORTD is set to the value of AdcValue. This will naturally set the
the bottom 8 bits of AdcValue to PORTD. To set the bits 8 and 9 of AdcValue to
PORTB bits 4 and 5, we use a left shift of four bits. The left shift operator >> will shift
everything in AdcValue to the left by four bits. We only want bits 8 and 9, so we mask
off everything but bits 8 and 9, (AdcValue & 0x0300). Then apply the shift.

The Analog Monitor must assert an EndTerm Address and the Write Enable to cause
the EPT-570-AP to process the digitized value.

Initiate Ports and Variables

PORTSB&D
10 BIT VALUE
Enter Loop
Read ADC Channel O
ENDTERM ADDRESS
Set Ports B & D to 10 bit Valug m——————p
Assert EndTerm Address 1 WRITE ENABLE

r -—.
Assert Write Enable
Clear Write Enable

We will do this by first setting the address and the upper 2 bits of the digitized value on

the output pins of PORTB. Then set Write Enable high. Finally, set Write Enable low.
UpperiddcValue = (AdcValue & 0x0300)%==4;

Ji%et the address=1

FORTE = EOOOOOOQLO | TpperddcValue;

SAIrite Enable Pin High

FORTE = EOOOOOOLY | UpperddcValue;
FiDe-assert the Write Enahle Pin &ddress=1
FORTE = EOOOQOOOLO | UpperddcValue;

The signal timing shows the ADC Conversion Start for each ADC channel followed by
setting the control signals.

Page

14

A EARTIHPEOPLE

TECHNOLOGY

Analog Monitor Project User Manual

analogRead(0) analogRead(1)
ADC CONVERSION START
10 BIT DIGITIZED VALUE /
N VALID ADCO >< VALID ADC1
ENDTERM ADDRESS yd
N VALID ADDRESS 1

WRITE ENABLE

Each time the Write Enable asserts and de-asserts, the cycle repeats with the next
analogRead().

Initiate Ports and Variables

PORTSB&D
10 BIT VALUE
Enter Loop
Read ADC Channel 0
ENDTERM ADDRESS
Set PortsB& Dto 10 bitValue 0
Assert EndTerm Address 1 WRITE ENABLE

o -—.
Assert Write Enable
Clear Write Enable

This continues for all six channels. The end of the loop() is reached, and the process
starts all over again.

3.2 Coding the Arduino Analog Monitor

Now that we have the Analog Monitor ports, analog read, address selection and write
enable defined , we can add all six channels in the loop() function and complete the
Analog Monitor. The first instruction in the loop() is a delay. This delay is useful
because the display to screen on the C# side takes several milliseconds. Because we are
using a high speed USB, the Arduino takes only a few instructions to write to the EPT-
570-AP. It will easily over fill the memory buffers in the C#. So, some delay is
necessary.

vold loop ()
{

delay(l0); /sDelay 10 m=

The next instructions are to read the analogRead(0) function using channel 0 and store
the value in the integer, AdcValue. The analogRead() function defaults to 10 bits. For
the Arduino, we want to transmit the AdcValue in the fewest instructions possible. So,

Page

15

2 EARTHPEOPLLE

TECHNOLOGY

Analog Monitor Project User Manual

we will add the bottom byte of AdcValue to PORTD and the top two bits to pins 4 and
5 of PORTB. To do this, we have to shift bits 8 and 9 of AdcValue to bit 4 and 5 of
PORTB. The code requires the right shift by 4.

S4 Bead Analog Signal 0

AdcWValue = analogRead(0):

PORTD = AdcWValue;

TUpperadcValue = [(AdcWalue & 0x0300)=>=4;

With PORTD set to the lower byte of AdcValue and the upper two bits shifted into
position, we will set PORTB to the address of the channel to transmit along with the
upper bits. At this point we will keep Write Enable low.

A4%et the Address=1

PORTE = BOOOOOOL10 | UpperddcWValue;

AAWrite Enable Pin High

PORTE = EOOOOOOLY | UpperddcValue:
FiDe-assert the Write Enable Pin Address=1
FORTE = BEOOOOOOLO | UpperddcValue:

FIE S U I R T e |

In the next instruction, we set the Write Enable high. Immediately following this
instruction, we set the Write Enable low. This will cause the entire 10 bit AdcValue to
transmit in the fewest instructions. The CPLD is clocked at 66 MHz which allows it to
transmit two bytes over the USB in less time than the Arduino. So, we let the CPLD do
the heavy lifting.

The Analog Monitor code will continue with samling the next channel and transmitting
its digitized value to the CPLD. Each iteration of the loop() function, samples all six
Uno analog channels and transmits them to the CPLD. The delay of 10 milliseconds
pauses the program each iteration.

Page

16

EAIRTIHPEOIPLE

TECHNOLOGY

Analog Monitor Project User Manual

Enter Loop

Read ADC Channel O

Set Ports B & D to 10 bit Value
Azsert EndTerm Address 1
Azsert Write Enable

Clear Write Enable

Read ADC Channel 1

Set Parts B & D to 10 bit Value
Aszert EndTerm Address 2
Assert Write Enable

Clear Write Enable

Repeat for Channel 2,3,4

Read ADC Channel 5

Set Ports B & D ta 10 bit Value
Assert EndTerm Address &
Aszsert Write Enable

Clear Write Enable

Back to top |:|:'FLc|c|p
So, the code looks like this:

Page

17

EARTHHPEOIPLE

TECHNOLOGY

Analog Monitor Project User Manual

Copyright Earth People Technology Inc. 2013

Arnalog Monitor: Six Channel Analog
Sanpler

Platform: EPT-570-4P-T2
*

int AdcWValue;
int UpperidcWValue;:

vold setup()

i
DDED = BL1111111; //%et Fort D as outputs
PORTD &= B11111111; //Turn on FPort D pins

DDEE = BOOL111111; //%et Fort B as outputs
PORTE &= BOOOOQOOOO //Turn on Fort B pins

vold loop ()
1

delavyil0): f/Delay 10 n=

44 Bead Analog Signal 0O
AdcWValue = analogRead(0) ;
FOETD = AdcValue;

TUpperadcValue = [(AdcWValue & 0x0300)>=4;

Fi%ert the Address=1

FOETE = BOOOOOOL1O | UpperddcWalue:

AAMeite Enable Pin High

PORTE = EOOOOOOLll | UpperddcWValue:
fiDe-azgsert the Write Enable Pin Address=1
FOETE = BOOOOOOL10 | UpperddcWalue;

S/ Bead Analog 3ignal 1

AdcValue = analogBRead(l):
PORTD = AdcWalue:

Page

18

EARTHHPEOIPLE

TECHNOLOGY

Analog Monitor Project User Manual

Upperddc¥alue = (&dcValue & 0x0300)>=4;

Si%et the Address=:Z

FORTE = EOOOOOLO0 | UpperddcValue:

AAWrite Enahle Pin High

FORTE = EOOOOOL10Y1 | UpperddcValue:
FiDe—assert the Write Enahle Pin Address=Z2
PORTE = EOOOQOL100 | UpperddcValue:

A4 Bead Adnalog 3ignal 2
LdcWalue = analogRead(2);
PORTD = AdcWalue;

UpperiadcValue = [(AdcWalue & 0x0300)>>4;

Ai%et the Address=3

PORTE = EOOO0QOL110 | UpperddcValue:

A/Meite Enahle Pin High

PORTE = EOO0OQOL111 | UpperddcValue;
fiDe—assert the Write Enable Pin address=3
PORTE = EOOOOOL10O | UpperddcValue:

A Read Analog 3ignal 3
AdeValue = analogBead(3) 2
PORTD = AdcWValue;

UpperdadcValue = [(AdcValue & 0x0300)>>4;

Fi3et the Address=d4

PORTE = EOOOQ1000 | UpperddcValue:

SAWrite Enable Pin High

PORTE = EOO0Q1001 | UpperddcValue:
FiDe—assert the Write Enable Pin Address=4
PORTE = EOOOO1000 | TpperddcValue;

A/ Read Analog 3ignal 4
AdcValue = analogBRead(d) ;
PORTD = AdcValue;

Upperddc¥alue = (&dcValue & 0x0300)>=4;

Page

19

EARTHHPEOIPLE

TECHNOLOGY

Analog Monitor Project User Manual

A4%et the Address=5

PORTE = BOOOOL1010 | UpperddcWValue;

AAWrite Enable Pin High

PORTE = EOOOO1011 | UpperddcValue:
FiDe—assert the Write Enable Pin Address=5
FORTE = EOOOO1010 | UpperddcValue:

A Read Mnalog Signal &
AdcWalue = analogRead|5);
PORTD = AdcValue;

UpperdadcWalue = [(AdcValue & 0x0300)>>4;

fi3et the address=6

FORTE = EOOOO1100 | UpperddcValue:

AArite Enable Pin High

PORTE = EOO001101 | UpperddcValue:
FiDe—assert the Write Enable Pin Address=6
PORTE = BOOOOL1100 | UpperddcWValue;

The Arduino code runs open loop. This means that the C# code and the CPLD cannot
control or delay it. As soon as the code is loaded from flash, it initializes local variables,
ports, and registers and starts running the instructions in the loop() function. The loop
will continue to sample analog channels and transmit them to the EPT-570-AP until the
power is removed.

3.3 Building Arduino Project

Building the Arduino project is the process of converting (compiling) the code you just
wrote into machine level code that the processor can understand. The Arduino IDE is
the software tool that does the compiling. The machine level code is a set of basic
instructions that the processor uses to perform the functions the user code. Browse to
the \Projects_Arduino\Arduino_Analog_Monitor\ Arduino_Analog_Monitor_Code_U2\
folder of the UNO_ANALOG_MONITOR_PROJECT_CD. Locate the Arduino_
Analog_Monitor_Code_U2.ino file.

To compile your code,
e Open up the Arduino IDE

Page

20

EARTHHPEOIPLE

TECHNOLOGY

Analog Monitor Project User Manual

|&;! | » Computer » Jolly Laptop PC () » Jolly » Products » Arduin » arduino-101 »

Il Organize » Open Bumn New folder
il x
|| Download ~ Name
I\ Drivers X
1| drivers
|| FunctionalSpec
|| eamples
|| License
— b hardware
|, Products H
I jova
|| Altera
I lib
|\ Aptina
N 1 libraries
|\ Arduing
|| reference
. arduine-101
| tocls
J| MEGA 2560
| arduino.ee
Il Uno e
%] eygicony-
Il Atmel =
4| cvawinL.dil
ketch_oct27a | Arduine 1.0. E;L Shared witl
File Edit Sketch Tools Help
e P ———————— R =

sketen_oct27a

e Load your code into the Sketch.

Page

21

EARTHHPEOIPLE

TECHNOLOGY

Analog Monitor Project User Manual

Open an Arduino sketch

Lookin: || Arduino_Analog_Monitor Code_U2 - @7 e mr
7 Name * Date modified Type
el (=] Arduino_Analog Monitor Code U2.ino 5/18/2013 11:46 AM _ INO File
Recent Places
Desktop
=
Libraries
LY
Computer
.
LH T 0 y
Network
Fie name Ardino_Analog_Moritor_Code_UZin -
Fies of type [Fies) v [Cancel
{8 Arduino_Analog_Monitor_Code_U2 | Arduino 101 = &= =

File Edit Sketch Tools Help

Arduino_Analog_Monitor_Code_U2

FE
Copyright Earth People Technology Inc. 2013 B

m,

Analog Monitor; 3ix Chamnel Analog
Sampler

Platform: EPT-570-AF-UZ
e

int Adc¥alue; |
int UpperddcValue;

void setup ()

{
DDRD = E11111111; //Ser Porc D as outputs
FORTD &= BL11111111: //Turn on Fort D pins

DDEE = BOOL11111; //%et Port B as outputs
PORTE &= BOOOOOOOO; //Turn on Port B pins i

e Click the Verify utton

Page

22

) EARTIHPEOPLE

TECHNOLOGY

Analog Monitor Project User Manual

Arduino_Anzlog_Monitor Code_U2 | Arduino 1.0.1 ‘ E=ra

File Edit Sketch Tools Help

Arduing_Analog_Monitor_Code_U2

IE -
Copyright Earth People Technology Inc. 2013

Analog Monitor; 5ix Channel aAnalog
Sampler

FPlatform: EPFT-570-AP-TUZ
i

int AdcValue;
int Upperidc¥alue;

woid setup ()

{
DDRD = B11111111; //5et Fort D as outputs
PORTD &= B11111111; //Turn on Port D pins

DDRE = BOO11111l; //5et Fort B as outputs
PORTE &= BOOOOOOOO; //Turn on Fort B pins

Arduino Uno on CORG

e |f there are no errors, the compiling will complete successfully

sketch size: 1 yhe maximam)

Arduine Une

Now we are done with compiling and ready to program the Arduino

3.4 Programming the Arduino

Programming the Arduino is the process of downloading the user’s compiled code into
the Flash memory of the Atmel ATMega328 chip. Once the code is downloaded, the
Arduino IDE resets the chip and the processor starts executing out of Flash memory.

To program the Arduino
e Connect the USB cable from PC to Arduino

Page

23

EARTHHPEOIPLE

TECHNOLOGY

Analog Monitor Project User Manual

—

e Plugin your board and wait for Windows complete the driver installation
process.

e Next, click on Tools and select Serial Port, then click the available port.

Arduine_Analog_Monitor_Code_U2 | Arduino 1.0.1 — El‘ﬁlg

File Edit Sketch Help

Auto Format Ctrl+T
Archive Sketch
Arduino_Analo Fix Encoding & Reload
Serial Monitor Ctrl+Shift=M i
int AdcValu
int Upperid Board b —
3 =
void setu () Serial Port |:v/ COME ‘
! Programmer 3 i
DDRED = E11l1
PORTD &= EL Burn Bootleader

DDRE = BOO111111; //%et Port B as outputs
PORTE &= BOODOOOOO: //Turn on Port B pins

'

void loop ()
{

delay(10); //Delay 10 us

/4 Read Analog Signal O -

e To load the code, click on the Upload button.

Page

24

h EARTIHPEOPLE

TECHNOLOGY

Analog Monitor Project User Manual

. .
Arduine_Analog_Monitor_Code_U2 | Arduino 1.0.1 h s oL

File Edit Sketch Tools Help

Arduino_Analog_Monitor_Code_ U2

int AdcValue:
int UpperidcWalue;

m

void setup()

{
LDRI = B11111111; //%et Port D as outputs
PORTD &= B11111111; //Turn on Fort I pins

DDEE = BOOL1111l; //%et Fort B as outputs
PORTE &= BOOOOOOQD: //Turn on Port B pins

+

void loop ()
{

delay(l0); #/Delay 10 ns

/¢ Fead &nalog Jigmal 0 o

When the code has completed loading, the Arduino IDE will automatically command
the processor to start executing the code. The Arduino is now ready for the EPT-570-
AP.

4 CPLD Active Transfer EndTerms Coding

The EPT-570-AP will accept the digitized data sampled by the Arduino and transfer it
to the PC. It is designed to plug directly into the Arduino Uno and there is no need for
external wires to be added. The Active Transfer Library is used to send the data to the
PC. The Active Transfer EndTerms are used to connect the Active Transfer Library to
the user code. This makes it easy to transfer data to and from the PC via the USB. The
user needs to create a state machine to control the transfer between the incoming data
and the Active Transfer EndTerms.

4.1 Define the User Design.

In this step we will define the user’s code and include EndTerms and the EPT Active
Transfer Library. The Active Transfer Library contains a set of files with a “.vgm”
name extension which select particular operations to perform (e.g., byte transfer, block
transfer, trigger).. The active_transfer_library.vgm file must be included in the top level
file of the project. The EndTerms will connect to the active_transfer_library and
provide a path to connect user code to the library. All of these files are available on the
Earth People Technology Project CD.

Page

25

EARTHHPEOIPLE

TECHNOLOGY

Analog Monitor Project User Manual

TRIGGER ENDTERM
ACTIVE TRANSFER SINGLE TRANSFER
LIBRARY ENDTERM USER Co

BLOCK ENDTERM

We will build our CPLD project using Quartus 11 software from Altera. The primary file
defining the user’s CPLD project is named “EPT_570_AP_U2_Top.v”. It defines the
user code and connects the active_transfer_library and Endterms.

The Analog Monitor project needs to accept a 10 bit value that spans the J8 connector
and the J10 connector. Three bits select the Transfer EndTerm to transmit on and a
write enable bit is used to start a state machine which latches all values and transmits
the digitized value. Because the active_transfer_library runs at 66 MHz we will need to
add some code ensure that the slower Write Enable signal from the Arduino can latch
the data into the Transfer EndTerm.

INPUT/OUTPUT PINS

11

| TOP LEVEL |

1L i

ACTIVE TRANSFER USER CODE
LIBRARY

. g

A EARTIHPEOPLE

7 TECHNOLOGY

Analog Monitor Project User Manual

The first thing to do is to create a top level file for the project. The top level file will
include the input and outputs for the CPLD. These are declared according to the Verilog
syntax rules. We won’t go through all the rules of Verilog here, but feel free to explore
the language more thoroughly at:

www.asic-world.com/verilog/introl.html#Introduction

4.2 Select the Input/Outputs

We need to set the inputs and outputs for EPT_570_AP_U2_Top.v. The 1/O nets will
stay the same for all EPT projects. All of the usable pins are connected to traces on the
EPT-570-AP board and serve specific functions. However, the pins that connect to the
Arduino can be set to either inputs or outputs. It is in the port section of the Verilog
module that the Arduino pins can be set. For the Analog Monitor project, we will read
from the J8 and J10 connectors. So, we set these as inputs. Since the analog inputs to
the Arduino are on the J9 connector, we will set it up as inputs. The following nets are
used to connect to the EPT-570-AP connectors.

Arduino Uno EPT-570-AP
Signal Port Pin | Connector Connector | Pin Port Signal
ADC D 7t00 IOL J8 7t00 | LB_IOL | analog_monitor_
Bits7t0 0 lower byte
ADC Bit 9 B 5 IOH J10 4 LB _IOH | analog_monitor_
upper_byte(1)
ADC Bit 8 B 4 IOH J10 1 LB_SER | analog_monitor_
Connects upper_byte(0)
EndTerm B 3 IOH To J10 3 LB_IOH | analog_monitor_
Address Bit 2 address(2)
EndTerm B 2 IOH J10 2 LB_IOH | analog_monitor_
Address Bit 1 address(1)
EndTerm B 1 IOH J10 1 LB_IOH | analog_monitor_
Address Bit 0 address(0)
Write Enable B 0 IOH J10 0 LB_IOH | analog_monitor_
en

Each net is followed by the net type wire or reg. If it is a vector, the array description
must be added.

Page
27

http://www.asic-world.com/verilog/intro1.html#Introduction

EAIRTIHPEOIPLE

TECHNOLOGY

Analog Monitor Project User Manual

modnle EFT_ 370 _AF U2 Top |

input wire [1:0] aa,

inpunt wire [1:0] bc _in,

ontput wire [2:0] bc _out,

inont wire [7:0] bBd inout,

inpnt wire [1:0] LB _SER, J/XIOH —— J10
input wire [5:0] LE AD, S FRD -— Jg
inpnt wire [7:01] LE TOH, JI¥IOH —— J10
inpnt wire [7:01 LB I0L., J/EIOL —- J8

S/Transceiver Control Signals

ontput wire TR DIR 1,
ontpnt reg IR CE 1,
ontpnt wire TR _DIR 2,
ontput reg IR OE 2,
ontput wire TR DIR 3,
ontput reg IR CE 3,
input wire SW_USER 1,
inpunt wire SW_USER 2,
ontput wire [3:0] LED
)

Page

28

EARTHHPEOIPLE

TECHNOLOGY

Analog Monitor Project User Manual

4.3 Registers and Parameters
Next, the parameter’s are defined. These are used as constants in the user code.

//Header Bytes for the Transfer Loopback detection
parameter TRRNSFER CONTROL BYIEL = 8'}
parameter TRANSFER CCONTROL BYTEZ2
parameter TRANSFER CONTROL BYTE3

J/5tace Machine Transfer Loopback detection

parameter TRANSFER CONTROL IDLE = O,
TRANSFER CCNTROL HDR1 = 1,
TRANSFER CONTROL HDR2Z = Z,
TRANSFER DECODE_ BYTE = =,
TRANSFER CONTRCL SET = 4;

parameter IDLE = 0,
START TRANSFER =1,
FIRST BYTE EN =2,
FIRST _BYTE RDY = 3,
SECCND _BYTE_EN = 4,
SECOND_BYTE RDY = =

paramnster GLOBAL RESET COUNT = 12'h0ScE;

Page

29

EARTHHPEOIPLE

TECHNOLOGY

Analog Monitor Project User Manual

Next is the Internal Signal and Register Declarations.

_I,-"_I,-"x:-::-:x:-:xssxsxzxxsxsxsxsxsxssxsxz

/% Internal Signals and Begisters Declarations

J.'r-lllrﬁﬁﬂﬁHHH

wire CLE_&&;
wire RE5T;

wire [23:0] uc_IN:
wire [21:0] UcC_ouT:

f/Finite 5tate Machine control registers
redg [2:0] atate, next:

FS/LED registers
redg led resetc;

S {Bwitch registers
redg switch reset;

S {Transfer registers

req transfer out reg;

wire transfer in received;
wire [7:0] transfer in byte;

wire [7:0] transfer out byte;

reg [2:0] transfer to host counter;
reg [2:0] transfer to host state;

S {Transfer Control registers

redg transfer in received reg;

reg [2:0] transfer control state;

reg [7:0] transfer control byte;
Page

30

EARTHHPEOIPLE

TECHNOLOGY

Analog Monitor Project User Manual

f/Transfer Control registers

reg
reg [2:0]
reg [7:0]

transfer in received reg:
transfer control state:;
transfer control byte:

S fTransfer Write from Arduino

req
reg
req
req
req
req 2:0
redg 210
req

//Reset signals
wire

reg [L1:0]

reg

f/Input/COutput Signals
reg

S /Reset =ignals
wire

reg [11:0]

Teg

S/ Input/Output Signals
reg

transfer write reg:;
transfer write;

transfer write data;
analog monitor lower byte:
analog monitor upper byte:
transfer address;

analog monitor address;
analog monitor en;

reset;
reset counter;
reset =signal reg:;

start_stop _cntrl:

reset:;
reset counter;
reset_signal reg:

start stop cntrl;

S /Control S5ignals for Actiwve Transfer Endterms

Teg

[5:0]

reg

[5:0]

wire [5:0]

S /Begisters to control the
Siwritten to the BC

req

reg

Page
31

start transfer array;
transfer out:
transfer busy array:
order of byte

first byte complete;
second byte complete;

EARTHHPEOIPLE

' TECHNOLOGY

Analog Monitor Project User Manual

4.4 Assignments

Next, add the assignments. These assignments will set the direction of the bus
transceivers that interface to the Arduino I/O’s. The transceivers also include an output
enable bit.

J e R R R R R R R R R R R R R

Fila S5ignal Assignments

assign TR DIR 1 = 1'bl; ff/1l = R £to B; 0 =B to A

assign TR DIR 2 = 1'bl; f/fl= A to B O=E to A

assign TR DIR 3 = 1'bl: f/l=ATo B; 0=5 to A

//Clock and Resec

assign CLE_&&6 = aa[]

assign R5T = reser:

assign reset = reset_signal reg:

f/iTranafer regi=tcers

ffasaign transfer out = tranafer write;

assign transfer out_byte = (state[START TRANSFER] | state[FIRZ
ffLED3 is used to signify to the user that the Start

f/switeh is enabled

assign LED[3] = ~{transfer out_1 | transfer out_2 | transfer

assign LED[Z:0] = «-::a.naftr_ndd:::a:
4.5 Reset Circuit

The reset signal is generated by a counter that starts counting upon power up. When the
counter reaches GLOBAL_RESET_COUNT.

Page

32

EARTHHPEOIPLE

TECHNOLOGY

Analog Monitor Project User Manual

-I,l"-l,l":lc:I:xxxxxxxxxxxxxxxxxxxxx:x:

Fi# Eeset Signal

SRR R R R R R R R R R R R R R R R R R R AR R AR AR AR AR AR AR AR R AR R R Rk

always @ (posedge CLE TN or negedge aa[C])

begin
if{laa[C])
begin
reset_signal reg <= 1'k0;
reset_counter <= 0;
end
else
begin
if(reset_counter < GLOBAL RESET COUNT)
begin
reset_signal reg <= 1'k0;
reset_counter <= reget counter + 1'kl;
end
else
begin
reset_signal reg <= 1'bl;
end
end

4.6 Input Registers

The section labled “Register the Inputs” applies the inputs from the Arduino to clocked
registers. This will eliminate any noise on these inputs from propagating through to the
state machines of the CPLD.

Page

33

EARTHHPEOIPLE

TECHNOLOGY

Analog Monitor Project User Manual

alway= @ (posedge CLE &6 or negedge RST)
begin
if('R3T)
begin
analog monitor en <=
analog monitor lower byte <= O
analog monitor upper byte <=
analog monitor address <=
end
el=se
begin
analog monitor en <= LE TOH[CO]:
analog monitor lower byte <= LE IOL;
analog monitor upper byte <= {LB TOH[<],LE SEE[1]}:
analog monitor address <= LB TOH[3:1];
end
end

4.7 Start/Stop and Write Enable detection

Next, we will add the transfer detection signal from the Arduino. This block will sample
the Write Enable signal and wait for it to go high.

PORTSBAD OWalr for Start_Stop Control to be Asserted from Analeg Monitor Window
10 BIT VALUE
4 O Wait for Write Enable to Assert _l

CNDTERM ADDRESS
—_—

WRITE ENABLE

It is also used to provide start/stop control for the CPLD code. This block will use four
registers to control the data and starting the state machine.
o transfer_write_reg —This is a latch register to hold the state of the Write Enable.
o transfer_write —This register is used to start the state machine and initiate the
multi byte write to the PC.
o transfer_write_data —This is a 10 bit register to hold the value of the analog
sample from the Arduino.
e transfer_address — 8 bit register to hold the EndTerm address from the Arduino.
The start_stop_cntrl signal is monitored every clock cycle. If it is sampled high, the
output enables of the 74L\VC4245 transceivers are set low and the outputs become

Page

34

A EARTIHPEOPLE

TECHNOLOGY

Analog Monitor Project User Manual

active. When start_stop_cntrl goes low, the output enables of the 74L\VC4245
transceivers are set high and sets the outputs to inactive.

This block will compare the input signal on analog_monitor_en to a high. The
analog_monitor_en is the registered version of LB_IOH[0]. When bit goes high, the
priority encoder goes into statement 1 and sets transfer_write_reg and transfer_write
high and latches the value on the analog_monitor_upper_byte and
analog_monitor_lower_byte to the transfer_write_data register. The
analog_monitor_address will be set to transfer_address. By setting transfer_write_reg
high, the priority encoder goes into statement 2 which will set transfer_write register to
low and stay in statement 2 of the priority encoder. When the analog_monitor_en
signal goes low, the encoder will reset transfer_write_reg and transfer_write to low. The
encoder goes back to waiting for the analog_monitor_en to assert high.

alway= @ (posedge CLE &6 or negedge RST)

begin
if (!R3T)
begin
transfer write reg <=
transfer write <= :
transfer write data <=
transfer address <=
TR CE 1 =
IR OE 2 = H
IR OE 3 =
end
else
begin
if(=start_stop_cntrl)
begin
TR CE 1 = :
IR OE 2 = H
IR OE 3

if(analog monitor en & !transfer write reg)
begin
transfer write reg <= H

Page

35

) EARTIHPEOPLE

TECHNOLOGY

Analog Monitor Project User Manual

transfer write <= H
transfer address <= analog monitor address
transfer write data <= {analog monitor upp:
end
elze if(analog monitor en & transfer write reg
begin
transfer write reg <= H
transfer write == H
end
elze if(lanalog monitor en & transfer write re
begin
transfer write reg <= H
transfer write <= H
end
end
else
begin
TR CE 1 = H
TR CE 2
IR OE 3 = H

end
end
end

4.8 EndTerm Selection
The Analog Monitor Project includes the use of six Active Transfer EndTerms. Each
EndTerm must have an address.

PORTSB &D P ENDTERM SELECTION
10BITVALUE | BYTE SELECTION
WRITE UPPER BYTE TO TRANSFER ENDTERM

ENDTERM ADDRESS
I WRITE LOWER BYTE TO TRANSFER ENDTERM

WRITE ENABLE
—_—

When the user code is ready to transmit a byte to the EndTerm, he must assert the
start_transfer port of the module. Each of Active_Transfer EndTerms has its own

dedicated net to pass to the start_transfer port. These nets are:
S /Control Signals for Active Transfer Endterms
reg [S:0] start transfer array;

Page

36

EARTHHPEOIPLE

TECHNOLOGY

Analog Monitor Project User Manual

This s a vector register with a range of 5 to 0. So, six individual signals can be asserted
to start the transfer to any of six Active_Transfer EndTerms. These nets are exclusively
selected by using the address passed from the Arduino. This selection is performed
using a case statement. We use an intermediate register vector to capture the address,
then later apply the storage vector results to the start_transfer_array. The
transfer_address vector is stored in the Transfer Detection block above. The EndTerm
selection is only performed when the USB Transfer state machine is in the
START_TRANSFER state.

always @ (posedge CLE_ 66 or negedge RST)
begin
if ('RST)
begin
transfer out <=
end
el=e
begin
if(state[START TRRNSFER])
begin
case (transfer address)

begin
transfer out <=
end

begin

transfer out <=
end
begin

transfer out <=

end

begin

Page

37

EARTHHPEOIPLE

TECHNOLOGY

Analog Monitor Project User Manual

transfer out <=
end

begin
transfer out <=
end

begin
transfer out <=
end

begin
transfer out <=
end
defanlt:
begin
transfer out <=
end
endoase
ncl

11}

end
end

4.9 Upper/Lower Byte Selection

The “Transfer Upper/Lower byte using selected Active Transfer EndTerm” block
selects the appropriate byte from the stored digitized sample and asserts the
start_transfer_array index. The EndTerm address was selected in the “Select the
Transfer EndTerm...” block.

PORTSB&D P ENDTERM SELECTION
10BMVALLUE } BYTE SELECTION
WRITE UPPER BYTE TO TRAMSFER ENDTERM

ENDTERM ADDRESS
> WRITE LOWER BYTE TO TRANSFER ENDTERM

WRITE EMABLE
—_—p

This block will require three registers:
o first_byte complete — used to indicate to the USB Transfer state machine that
the upper byte has been transferred to the Active Transfer EndTerm.
e second_byte complete— used to indicate to the USB Transfer state machine that
the lower byte has been transferred to the Active Transfer EndTerm.
e start_transfer_array — this is a six bit vector used to accept the address of the
EndTerm selected in the “Select the Transfer EndTerm...” block (transfer out).

Page

38

A EARTIHPEOPLE
5 T E C N

H OLOGY

Analog Monitor Project User Manual

The block is a conditional branch statement that uses the following states from the USB
Transfer state machine to branch:

FIRST_BYTE EN = 2,

FIRST BYTE RDY = 3,

SECOND BYTE EN = 4,

SECOND BYTE RDY =

1. After analog_monitor_en is asserted, the state machine will reach
state[FIRST_BYTE_EN]. In this state the signal, first_byte complete, will go
high and the start_transfer_array is set to the EndTerm selected in the “Select
the Transfer EndTerm...” block. This is the transfer_out vector.

PORTSB&D ENDTERM SELECTION

10 BIT VALUE BYTE SELECTION

WRITE UPPER BYTE TO TRANSFER ENDTERM

ENDTERM ADDRESS
— WRITE LOWER BYTE TO TRANSFER ENDTERM
WRITE ENABLE

Each bit of start_transfer_array will coorespnd to exactly one EndTerm and keep
the rest de-asserted. In this conditional branch the selected EndTerm will
transfer the lower byte on its transfer_to_host port. The second_byte _complete
signal is used as a conditional branch to leave state[SECOND_BYTE_EN] and
enter state[SECOND_BYTE_RDY]. Byte selection is performed using an assign
statement to the transfer_out_byte:

ffTransfer registers

as=ign transfer out byte = (=ztate[START TRANSFER] | =state[FIRST_BYTE EN] |
state [FIRST _BYTE RDY] 2 { (transfer write data[®:2]} : (state[SECOND BYTE EN] |
state [SECOND EBYTE RDY]) ? transfer write data[7:0] : y

2. EndTerm selection of transfer_out. The start_transfer_array allows only one bit
to be high at one time. This will allow only one EndTerm to transfer the upper
byte on its transfer_to_host port. The first_byte complete signal is used as a
conditional branch to leave state[FIRST_BYTE_EN] and enter
state[FIRST_BYTE_RDY] in the USB Transfer state machine.

3. The next conditional branch is reached when first_byte complete goes high and
state[FIRST_BYTE_EN] is high. In this state, the start_transfer_array is set to
zero.

4. The third conditional branch is reached when state[FIRST _BYTE_EN] is low
and signals that the upper byte transfer is complete and the state machine has
moved to another state.

Page
39

B EARTHPEORLE

TECHNOLOGY

Analog Monitor Project User Manual

FORTSB&D EMDTERM SELECTION

10 BIT VALUE BYTE SELECTION

J

WRITE UPPER BYTE TO TRANSFER ENDTERM
ENDTERM ADDRESS

|

WRITE LOWER BYTE TO TRANSFER ENDTERM
\WRITE ENABLE

5. The next conditional branch is reach when second_byte _complete is low and
state[SECOND_BYTE_ENT] is high. In this state the signal
second_byte _complete will go high and the start_transfer_array will transfer the
lower byte on its transfer_to_host port. The second_byte complete signal is
used as a conditional branch to leave state[SECOND_BYTE_EN] and enter
state[SECOND_BYTE_RDY].

6. The next conditional branch is reached when second_byte complete goes high
and state[SECOND_BYTE_EN] is high. In this state, the start_transfer_array is
set to zero.

7. The third conditional branch is reached when state[SECOND_BYTE_EN] is
low and signals that the upper byte transfer is complete and the state machine
has moved to another state.

4.10 Transfer Control Register State Machine

The start_stop_cntrl signal is set by using the TRANSFER_CONTROL state machine
in the following section. So, if the start_stop_cntrl signal is set, the CPLD code will
enter the conditional branch code and wait for the Write Enable signal to assert.

Next, we add the TRANSFER_CONTROL state machine to read the Control Register
from the Host PC using the active_transfer EndTerm. This state machine will decode
the 8 bit control register only after a sequence of three 8 bit bytes in the order of 0x5a,
0xc3, 0x7e. The operation of the state machine is as follows.

1. The TRANSFER_CONTROL state machine will stay in the idle state of the
parallel encoder until a byte from the active_transfer transfer_to_device register
receives a Ox5a.

2. This will cause the transfer_control_state to be changed to
TRANSFER_CONTROL_HDRL1.

3. The state machine will stay in the TRANSFER_CONTROL_HDR1 state until
the next byte is read from the active_transfer.

4. If the byte from transfer_to_device is a 0xc3, the transfer_control_state will be
changed to TRANSFER_CONTROL_HDR2.

5. If the byte from transfer_to_device is not a 0xc3, the transfer_control_state will
go back to idle.

Page

40

h EARTIHPEOPLE

TECHNOLOGY

Analog Monitor Project User Manual

6. Inthe TRANSFER_CONTROL_HDR?2 state , the state machine will stay in this
state until the next byte from the active_transfer is received.

7. If the byte from transfer_to_device is a 0x7e, the transfer_control_state will be
changed to TRANSFER_DECODE_BYTE.

8. If the byte from transfer_to_device is not a Ox7e, the transfer_control_state will
go back to idle.

9. Inthe TRANSFER_DECODE_BYTE state , the state machine will stay in this
state until the next byte from the active_transfer.

10. The next byte transferred from active_transfer will be decoded as the Control

Register.
The bits of the Control Register are defined below.

Register Bits Description Assertion

Control 0 Start Stop Cntrl High
1 Not Used
2 LED Reset High
3 Switch Reset High
4 Transfer In Loop Back High
5 Not Used
6 Not Used
7 Not Used
7 Not Used

Page

41

EARTHHPEOIPLE

TECHNOLOGY

Analog Monitor Project User Manual

S -
S Btate Machine: Control HRegister from Transfer In
S
always @ (posedge CLE _IN or negedge EST)
kegin
if (!'R5T)
begin
transfer in received reg <= 1'b0;
transfer control state <= TRANSFER LOOPEACE IDLE:
transfer in loop back <= 1'kD;
led reset <= 1'LO;
switch reset <= 1'b0;
end
el=e
begin
if(transfer in received & !transfer in received reg)
begin
transfer in received reg <= 1'bl;

case (transfer control state)
TRANSFER CONTRCL IDLE:
if((tranafer in byte = TRANSFER CONTROL BYTE1l))
transfer control state <= TRANSFER CONTROL HDRI:
else if((transfer in byte != TRANSFER CONTROL BYTEL))
transfer control state <= TRANSFER CONTROL IDLE:
else
transfer control state <= TRANSFER CONTROL IDLE:
TRRNSFER CONTROL HDRI1:

if{(tranafer in byte =— TRANSFER CONTROL BYTEZ))
transfer control state <= TRANSFER CONTROL HDRZ:
else if((transfer in byte != TRANSFER CONTROCL BYTEZ))
Page

42

F o CAIRTHPEOPLE

TECHNOLOGY

Analog Monitor Project User Manual

transfer control state <= TRANSFER CONTROL IDLE:
else
transfer control state <= TRANSFER CONTRCL HDRI1:
TRANSFER CONTROL HDRZ:
if{(transfer in byte — TRANSFER CONTROL EBYTE3))
transfer control state <= TRANSFER DECODE BYTE;
else if((transfer in byte != TRANSFER CONTROCL EBYTE3))
transfer control state <= TRANSFER CONTROL IDLE:
el=se
transfer control state <= TRANSFER CONTROL HDRZ:
TRANSFER DECODE EYTE:
begin
transfer in loop back <= transfer in byte[C0]:
led reset <= transfer in byte[Z]:
switch reset <= transfer in byte[Z]:
transfer loopback state <= TRANSFER LOOPEACK SET:;
end
TRANSFER CONTROL SET:
begin
transfer control state <= TRANSFER CCNTRCL IDLE;
end
endoase
end
else if(!transfer in received & transfer in received reg)
transfer in received reg <= H
end
end |

4.11 USB Transfer State Machine

The USB Transfer State Machine is quite a bit different than the Transfer Control state
machine. It is two always statement one-hot finite state machine. It is used here because
it provides high speed glitch free operation. One hot means that it has one register for
each state. The two always block setup allows a synchronous operation to be relegated
to moving the state machine to the next state.

Page

43

EARTHHPEOIPLE

TECHNOLOGY

Analog Monitor Project User Manual

f Hext State Logic
always @ (posedge CLE 66 or negedge RST)
begin
if (!RE3T)
begin
state <= H
state[IDLE] <= H
end
el=e
state <= next;
end

An asynchronous always block is used to select which state will be the next state. All of
the outputs are handled in their own always blocks and separate from the state machine.
'# State Definitions
always @ (state or transfer write or firstc byte complete or
second byte complete or transfer write or start transfer array or
transfer busy array)
kegin
next =

This asynchronous always block is the one which causes the state machines conditional
branches to update. If the conditional branches are not updated with the correct inputs,
then the next[...] statement will not get updated with the correct state and the state
machine could get stuck in the wrong state. So, each input into the state machine MUST
be entered into the sensitivity list of the “State Defiinitions” always block.

SECOND

BYTE RDY TRANSFER

If{byte_stored)

1. The state machine stays in state[IDLE] until the analog_monitor_en goes high.
When this signal goes high, the state machine goes into

Page

44

EARTHHPEOIPLE

TECHNOLOGY

Analog Monitor Project User Manual

state[START_TRANSFER]. This state causes the transfer_out to latch an
EndTerm selection based on the transfer_address. This state does not have a
conditional branch, so it immediately proceeds to state[FIRST_BYTE_EN].

In state[FIRST_BYTE_EN], the “Transfer Upper/Lower byte using selected
Active Transfer EndTerm” block will select the upper byte to transfer over the
USB. A conditional branch causes the state machine to stay in this state until
first_byte _complete goes high.

. The next state is state[FIRST_BYTE_RDY]. Here the byte has been transferred
into the Active Transfer EndTerm selected by start_transfer_array. This state has
a conditional branch that waits until the byte has been transferred across the
USB and the Active Transfer Library is ready. It waits for transfer_busy_array
to be zero.

. The state machine progresses to state[SECOND_BYTE_EN] and causes the
“Transfer Upper/Lower byte using selected Active Transfer EndTerm” block to
select the lower byte to transfer over the USB. A conditional branch causes the
state machine to stay in this state until second_byte complete goes high. Upon
its assertion, the state machine proceeds to state[SECOND_BYTE_RDY].

In state[SECOND_BYTE_RDY] the byte has been transferred into the Active
Transfer EndTerm selected by start_transfer_array. This state has a conditional
branch that waits until the byte has been transferred across the USB and the
Active Transfer Library is ready. It waits for transfer_busy_array to be zero.
Upon successful completion of the second byte transfer, the state machine goes
back to the state[IDLE] and waits for analog_monitor_en to go high and start the
process over again.

Page

45

EARTHHPEOIPLE

TECHNOLOGY

Analog Monitor Project User Manual

if {state[IDLE])
begin
if (transfer write)
next [START TRANSFER] 1'bl:
else
next [IDLE] = 1'bl;

end

if (state[START TRANSFER])
next [FIRST_BYTE EN] 1'bl:

if (stace[FIRST_BYTE EN])
if (first_byte_ complete)
next [FIRST BYTE RDY] = 1'bl;
else
next [FIRST BYTE EN] = 1'bl;

if (state[FIRST BYTE RDY])
if (transfer busy array = 0)
next [SECOND BYTE EN] = 1'bl;
else
next [FIRST BEYTE RDY] = 1'bl;

if (state[SECOND_BYTE_EN])
if (szecond byte complete)
next [SECOND EYTE RDY] = L1'bl;
else
next [SECOND BYTE EN] = 1'bl:

if (stace[SECCND BYTE RDY])
if (transfer busy array = ()
next [IDLE] = 1'b1;
else
next [SECOND BYTE RDY] = 1'bl;

4.12 EndTerm Instantiation

Next, up is the instantiation for the active_transfer_library. The ports include the input
and output pins and the two buses that connect the active modules. These buses are the
input UC_IN[23:0] and output UC_OUT[21:0].

Page

46

EARTHHPEOIPLE

TECHNOLOGY

Analog Monitor Project User Manual

INPUT/OUTPUT PINS

11

TOP LEVEL

T

VE TRANS USER CODE
LIBRARY

active transfer library ACTIVE TRAWSFER LIERARY TNST
{

. aa (aa),

.bc in (bc_inj),
.bc_out (bc_out),
.bd inout (bd inout),
.UC_TIH (UC_IN),
.0OC_ouT (UC_0UT)

y:

Finally, we instantiate the EndTerms. For the Analog Monitor project, we only need
active_transfer and active_trigger EndTerms. The uc_out port for both modules must be
shared. Since they both drive this bus, a bus wide wired-or circuit is used so that they
don’t drive each other. The active transfer EndTerm has a port for the address
(uc_addr). This allows the PC to address up to 8 different modules. Just add a three bit
address to this port and the PC must add this same address to communicate with this
module.

M-

ff Imstantiate the EPT Lctive Modules

A
wire [22%5-1:0] wuc_out _m;

eptWireCR # (.N(£)) wireOR (UC_OUT, uc out_m);

Next, we will instantiate six Active Transfer EndTerms. So, add the leaf instantiation
with the address fixed 1, 2, 3, 4, 5, 6, for each EndTerm. Add the start_transfer_array,

Page

47

EARTHHPEOIPLE

TECHNOLOGY

Analog Monitor Project User Manual

transfer_busy_array and transf_out_byte to control the transmission of the digitized
value across the USB.

active transfer

{

ACTIVE_TRANSFER_INST 1

-uc_clk (CLE_&8),

.uc_reset (R5T) ,

.uc_in (TC_IN),

LuC_out (uc_out m[%22 +: 22 1),

.start_transfer (start_transfer array[C]),

-transfer received ().
.transfer busy (cransfer busy array[C]) .,
.uc_addr (2'hl),

.transfer to host (cransfer out byte),

.transfer to device ()

active transfer

{

LACTIVE TRANSFER INST 2

uc_clk (CLE_&8),

.uc_reset (EST) ,

.uc in (OC_IN),

.uc_out (uc out m[2%22 +: 22]),

.start_transfer

.transfer received

-transfer busy

.uc_ addr

.transfer to host

-transfer to device

Page

(start_transfer array[l]},

(cransfer in received),

(transfer busy arrav[l]).,

(3'h2},

(transfer out byte),

(transfer in byte)

48

EARTHHPEOIPLE

TECHNOLOGY

Analog Monitor Project User Manual

active transfer ACTIVE TRANSFER INST 3

(
-uc_clk (CLE_&8),
.uc_reset (R5T) ,
.uc in (Uc_IN),
-uc_out (uc_out_m[%22 +: 22 1),
.start_transfer (start_transfer array[Z]).,
-transfer received (),
.transfer busy (transfer busy arrav[Z]).
.uc addr {(3'03),
.transfer to host (transfer out byte),
-transfer to_device ()

)

active transfer ACTIVE TRANSFER INST 4

(
.uc_clk (CLE_&6) ,
.uc_reset (RET) ,
.uc in (UC _IN),
Luc_out (uc_out _m[<#*22 +: 22 1),
.start_transfer (start_transfer arrav[Z]),
-transfer receiwved (),
.transfer busy (transfer busy arrav[3]).
-uc_addr (3'h4),
.transfer to host (tran=sfer out byte),
.transfer to_device ()

)

Page

49

- EARTHPEOPLE

TECHNOLOGY

Analog Monitor Project User Manual

active transfer ACTIVE TRAWSFER TINST 5

(

-uc_clk (CLE &6},

.uc_reset (RST) ,

.uc_in (UC_IN),
.uc_out (uc_out m[S +: 1),
.start_transfer (start_transfer array[<]),
.transfer received ().
.transfer busy (transfer busy array[<]}.
.uc_addr { |
.transfer to host (transfer out byte),
.transfer to device ()

)i

active transfer ACTIVE TRAWSFER TINST &

(
-uc_clk (CLE &6},
.uc_reset (R5T) ,
.uc_in (UC_IN),
.uc_out (uc_out m[&% +: 1),
.start transfer (start transfer array[Z]).,
.transfer received ().
.transfer busy (transfer busy array[:z]}.
.uc_addr { |
.transfer to host (transfer out byte),
.transfer to device ()

)i

endmodnle

The “endmodule” signifies the module is done and no more code is allowed beyond that
point.

Next, we are ready to compile and synthesize.

4.13 Compile/Synthesize the Project

The Quartus Il application will compile/ synthesize the user code,
active_transfer_library, and the Active EndTerms. The result of this step is a file
containing the CPLD code with “*.pof™. First, we need to create a project in the
Quartus Il environment. Follow the directions in the section: “Compiling, Synthesizing,
and Programming CPLD” of the User Manual.

Page

50

EARTIHPEOIPPLLE
TECHNOLOGY

Analog Monitor Project User Manual

Bring up Quartus I, then use Windows Explorer to browse to
c:/altera/xxx/quartus/qdesigns create a new directory called: “EPT_Analog_Monitor”.

Open Quartus 11 by clicking on the icon . }

0 conr sz, N T il
Fle Edt View Project Assionments Processing Teos Window Hep 5 Sea Q@
DM@ S rReoc[. CE¥Y /E€¥e T Y ed I &8
TIr R WRERCEEY W w2 @
Project Navigator L8 x

& compilation Hierarchy

Take an
Online Training
Class for Free

Now Available

AITERA

& terarchy | B Fles | oF Desgnunis |

- w QUARTUS' 11

Flow: Compilation ~] [customize...] f
Task - Version 12.0

4 W Compie Design

1 w Buy Software

rate programming fles
b P TimeQuest Timing Analysis

m v ® Documentation

[x]
=]
@

Type Message

X V¥ <<searchz> ~ ‘
4 ‘

all «
al System /_Processing /\ Extra Info /'_Info J\ Warning J_ Critical Warning J_Error /_Suppressed /\ Flag /
2|[Location:][o= |

0% 00:00:00

Under Quartus, Select File->New Project Wizard. The Wizard will walk you through
setting up files and directories for your project.

Page

51

EARTIHPEOIPPLLE
TECHNOLOGY

Analog Monitor Project User Manual

| Quartus 11 32-bit 7
Edit View Project Assignments Processing Tools Window Help @
(O new... Cirl+
| & open... cirl+0

Close Cirl+F4

@ Mew Project Wizard...

=

[Open Project... Ctrl+1
Save Project
i Close Project
Download
H save cl+s
Save As...
& saveal Ctrl+Shift+5

File Properties...

Create { Update 3

Export...

Convert Programming Files. ..

Q] Page Setup...
E{ Print Preview

& print... crl+p
Recent Files 3
Recent Projects 3
Exit Alt+F4
2_system /\ Processing /\ Exira Info /\ Info /\ Warning /_Critical Wamning /\ Error /\ &
|Lucanon:

| Starts the New Project Wizard

@4 New Project Wizard x

Directory, Name, Top-Level Entity [page 1 of 5]

What is the working directory for this project?

C:faltera/12, 1sp1/quartus/qdesigns/EFT_Data_Collector E
What is the name of this project?
EPT_S70_AF_U2_Top)

What is the name of the top-evel design entity for this project? This name is case sensitive and must exactly match the entity name in the design file.

EPT_570_AP_U2_Top ()

Use Existing Project Settings...

<Back | [Mext> | [Fnmsh || cancel |[Hep |

Page

52

EARTHHPEOIPLE

TECHNOLOGY

Analog Monitor Project User Manual

At the Top-Level Entity page, browse to the
c:\altera\xxx\quartus\qdesigns\EPT_Analog_Monitor directory to store your project.
Type in a name for your project “EPT 570 AP U2 Top”.

Follow the steps up to Add Files. At the Add Files box, click on the Browse button and
navigate to the project Analog Monitor install folder in the dialog box. Browse to the
\Projects HDL\EPT_ Analog_Monitor \EPT_570_AP_U2_Top folder of the EPT USB-
CPLD Development System CD. Copy the files from the \src directory.

e Active_transfer.vgm
Active_trigger.vgm
Active_transfer_library.vgm
eptWireOr.v
ETP_570_AP_U2_Top.v

Add the files:

Category: -Device. “ |
Gened
Files I
Libraries Select the design files you want to indude in the project. Click Add All to add all design files in the project directory to the

4 Operating Settings and Conditions project.
Voltage
Temperature File name:) add

[N

Compilation Process Settings
Early Timing Estimate File Name Type Library Design Entry,
Incremental Compilation .. fsrc/eptWireOR. v Verilog HOL File <MNone >
Physical Synthesis Optimizations «fsrc/EPT_S570_AP_U2 Top.v Verilog HOL File <Mone = Remove

EDA Tool Settings ..ferc/active_trigger.vam Verilog Quartus Mapping File <Mone =
Design Entry/Synthesis ..fsrcfactive_transfer_library.vgm Verilog Quartus Mapping File <None > Up
Simulation ..fsrcfactive_transfer.wgm Verilog Quartus Mapping File <MNone >
Formal Verification Daown
Board-Level : -

Analysis & Synthesis Settings Properties
WHOL Input
Werilog HOL Input

[N

[N

Default Parameters
Fitter Settings
TimeQuest Timing Analyzer
Assembler
Design Assistant
SignalTap 11 Logic Analyzer
Logic Analyzer Interface
PowerPlay Power Analyzer Settings
55N Analyzer

| mm | 3

[¥ Buy Software] [oK] I Cancel l Apply

Select Next, at the Device Family group, select MAX 11 for Family. In the Available
Devices group, browse down to EPM570T100C5 for Name.

Page

53

EARTIHPEOIPPLLE
TECHNOLOGY

Analog Monitor Project User Manual

Select Next, leave defaults for the EDA Tool Settings.

Select Next, then select Finish. You are done with the project level selections.

4.14 Synthesizing

With the project created, we need to assign pins to the project. The signals defined in
the top level file (in this case: EPT_570_AP_U2_Top.v) will connect directly to pins on
the CPLD. The Pin Planner Tool from Quartus Il will add the pins and check to verify
that our pin selections do not violate any restrictions of the device. In the case of this
example we will import pin assignments that created at an earlier time. Under
Assignments, Select Import Assignments.

€4 Quartus T 64-Bit - Caltera/12.1spl/quartus/qdesigns/EPT Transfer_Test/EPT_570_AP_UZ Top - EFTSTOAP U2 Top & ol). [
File Edit View Project [Assi] Processing Tools Window Help 5 search altera.com
PEEEINEY ks CEFQ O P OO R QYL 0D

" Settings. Ctrl+ Shift+E
Project Navigator

Entity TimeQuest Timing Analyzer Wizard...
Ay MAX T EPMSTOT100CS

p Assignment Editor
» EPT_570_AP_U2 Top it P
nnnnnnn

Remove Assignments...

§% Back-Annotate Assignments...
Import Assignments..
Export Assignments...

Assignment Groups...

L= QUARTUS II

Tk Version 12.1

4 b Compile Design
b B Analysis & Synthesis
» B Fitter (Place & Route)
b B Assembler (Generate programmin
» B TimeQuest Timing Analysis
» W EDA Netlist Writer

Ay Hierarchy IEHWES [

[Tasks

¥ Buy Software

(] View Quartus Il

M Program Device (Open Programmer) ow Quartus
@ Documentation
J n o
=@ = coomon =
Afltype ID Message

lessages

« »
=|_system /_Processing /

Imports assignments from other sources 0% 00:00:00

At the Import Assignment dialog box, Browse to the
\Projects HDL\EPT_Transfer_Test \Altera EPM570_U2 folder of the EPT
ANALOG_MONITOR_PROJECT CD. Select the “EPT 570 AP _U2 Top.qsf” file.

Page

54

EARTHHPEOIPLE

TECHNOLOGY

Analog Monitor Project User Manual

& mport Assigrment N STEFE RN N | -

Specify the source and categories of assignments to import.

File name: echnology /EPT USB-CPLD Development System CD/Projects_HDL/EPT _Transfer_Test/altera_EPM570_U2/EPT_S70_AP_UZ2_Top.gsf E]
Copy existing assignments into EPT_570_AP_Transfer_Test. gsf.bak before importing

[QK][Cancel H Help]

Next, we need to add the Synopsys Design Constraint file. This file contains timing
constraints which forces the built in tool called TimeQuest Timing Analyzer to analyze
the path of the synthesized HDL code with setup and hold times of the internal registers.
It takes note of any path that may be too long to appropriately meet the timing
qualifications. For more information on TimeQuest Timing Analyzer, see

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf?GSA_pos=1&WT.oss_r=1&
WT.oss=TimeQuest Timing Analyzer

Browse to the \Projects HDL\EPT _ Analog_Monitor \Altera_ EPM570_U2 folder of the
EPT USB-CPLD Development System CD. Select the “EPT 570 AP U2 Top.sdc”
file.

— — — g - — -

@Q-\ | « Products » Earth People Technology b EPT USB-CPLD Development System CD » PrujadsfHDL » EPT_Data_Collector » EPT_570_AP_U2 Top » ~ |43 [f Se
s
Organize * | |Open Sharewith v Bum Newfolder
. Earth People Technelogy * Name B Date modified Type Size

. EPTI2C PrDJEEt cD || EFI_3/U_AP_UZ_lop.Jit.summary 373015 LLL AM SUMMARY File 1 KB
| EPT Projects Folders |1 EPT_570_AP_U2_Top flow.rpt 3/2013L12AM RPTFile 7K8
| EPT USB-CPLD Development System CD || EPT_570_AP_U2_Top jdi 3/3/2013112AM UDIFile 1K8
| Arduino_IDE || EPT_570_AP_U2_Top.map.rpt 33/20131:12AM RPT File 42K8
| Documentation || EPT_570_AP_U2_Top.map.smsg 3/20131:12AM SMSG File 1KB
| Drivers || EPT_570_AP_U2_Top.map.summary 33/20131:12 AM SUMMARY File 1KB
| Projects._ActiveHost 328it | L EPT570_4P_U2 Top.pin 33/20131:12AM PINFile 15KE
| Projects_ActiveHost_64Bit ‘E‘ |_| EPT_570_AP_U2 Top.pof 3/3/20131:12 AM POF File 15KB
| Projects_ Arduino || (&) EPT_570_4P_U2 Top.gpf 10/22/201212:04 .. QPFFile 2K8
Projects_ HDL |1 EPT_570_AP_U2_Top.qsf 1/28/201312:07 AM QSF File 6KB
| EPT_Data_Collector |1 EPT_570_AP_U2_Top.qsf.bak 10/22/201212:05 .. BAKFile 3KE
| EPT_S70_AP_M4_Top |1 EPT_570_AP_U2_Top.qws 33/2013131AM QWS File 2K8
| EPT_S70_AP_U2_Top || EPT_570_AP_U2_Top.sdc 1/24/201310:01 PM SDC File 4KB
b src || EPT_570_AP_U2_Top.sta.rpt 3/3/20131:12AM RPTFile 139 KB
| | EPT Transfer Test || EPT_570_AP_U2_Top.sta.summary 33/20131:12 AM SUMMARY File 1KB
| Quartus_Programmer - |_| EPT_570_AP_U2_Top_assignment_default. 1/24/2013 9:18 PM QDF File 56 KB

EPT_570_AP_U2_Top.sdc State: B Shared Size: 339 KB Shared with: Homegroup

SDC File Date modified: 1/24/201310:01 PM Date crested: 1/28/201311:30 PM

Copy the file and browse to c:\altera\xxx\quartus\qdesigns\EPT _Analog_Monitor
directory. Paste the file.

Page
55

EARTIHPEOIPPLLE
TECHNOLOGY

Analog Monitor Project User Manual

pa— o w ———— — -
» B s st - - s m- -
@O » Computer » Gateway (C) » altera » 121spl » quartus b qdesigns » EPT Data Collector »
Organize » [Open Bum MNewfolder
1. qdesigns - Name . Date madified Type size
|\ EPT_Data_Collector
L db 3/14/2013 1207 AM File folder
J! EPT Transfer Test
i (S EPT_570_AP_U2_Top.qef 3/14/20131206 AM QPF File 2k8
] Ite
\ = IR || EPT_570_AP_U2_Top.qsf 3/14/201312:07 AM QSF File 4KB
)\ incr_comp_makefile
" ' || EPT_570_AP_U2_Top.qsfbak 3/14/20131208 AM BAKFile 4KB
1! vhdl_verilog_tutorial
|| EPT_570_AP_U2 Topsde 1/24/201310:01 PM__ SDC File G
1\ sope_builder
E altera_inspector.log.zip
o
1. book
|\ Brother
o CIMTEMP
4. Documents and Settings
1 Jolly
J\ Business Opportunities
)\ Capitol_Callege
I\ Code FPGA
L Dacumente S
EPT_570_AP_U2 Top.sdc Date modified: 1/24/2013 10:01 PM Date created: 3/14/201312:09 AM
SDC File Size: 339KB

and select the Start Compilation button.

This will cause the compile and synthesization process. After successful completion, the
screen should look like the following:

E - =) |
File Edit View Project Assignments Processing Tools Window Help Search alteracom ®
DEH@ & 2@ 9 oli[Fsneu S EFO D r B i @ P Ae
Project Navigator i@ x ‘ @& Compilation Report - EFT_570_AP_U2_Top [x]
Entty Table of Contents 1s
iy MAX I EPMSTOTI00CS BB Flow Summary Flow Status Successful - Thu Mar14 00:11:06 2013
4 4 EPT_ST0_AP_U2 Top =5 Flow Settings QuartusT164-Bit Version 121 Build 243 01/31/2013 5P 1) Web Edition
B active_transfer:ACTIVE_TRANSFER INST 23 Flow Non-Default Global Settings Rl AR M T
b B8 active_transfer_library:ACTIVE_TRANSFER L ... 9 Flow Elapsed Time LASEETy e B ARIRTE
B89 active trigger:ACTIVE_TRIGGER INST 7 Flow OS Summary [F:’"“y gp:j:;;mm&
2 eptWireOR-wireOR [E] FlowLog eviee
) Aty 8 Synthess Timing Models Final
- Ty [t losi cements 283/570(50 %)
& QuanusT al pins 51776 (67 %)
Full Compilation was successful (49 warnings) e v
« m FM blocks 0/1(0%)
Ay Hierarchy Fies | & Desgnunis |)
= | o]

Flow: [Compiation ~ | [customize..)
Task
& 4 P Compile Design 0
< b B Analysis & Synthesis 0
L4 > P Fitter (Place & Route) o
L4 I B Assembler (Generate programmin... O
< b B TimeQuest Timing Analysis o
< b B EDA Netlist Writer o
Ui Program Device (Open Programmer)
4 i J V|1 i 3
ORISR v
#ltype ID Message -
() 332102 Design is not fully constrained for hold requirements
P Q Quartus II 6€4-Bit TimeQuest Timing Analyzer was successful. 0 errors, 13 warnings
[e7] Running Quartus IT &4-Bit EDA Netlist Writer
@ Command: quartus_eda --read settings_files=off --write settings_files=off EPT_S570_AP_U2_Top —c EPT_S70_AP_U2_Top
(§) 204018 Generated files "EPT_570_aP U2_Top.vho" and "EPT_570_&P U2_Top_vhd.sdo" in directory "C:/altera/12.1spl/quartus/qdesigns
I3 Quartus IT 64-Bit EDA Netlist Writer was successful. 0 errors, 0 warnings
ol @ 293000 guarctus II Full Compilation was successful. 0 errors, 49 warnings =
i J v
=\ System (1) /_Processing (120)

100% 00:00:15

Page

56

EARTHHPEOIPLE

TECHNOLOGY

Analog Monitor Project User Manual

If the synthesis fails, you will see the failure message in the message window. Note that
in addition to fatal errors, the compile process can produce “warnings” which do not
necessarily prevent execution of the code but which should be corrected eventually.

At this point the project has been successfully compiled, synthesized and a
programming file has been produced. See the next section on how to program the

CPLD.

4.15 Program the CPLD
The final step is programming the “*.pof™ file into the CPLD.

=

e Connect the EPT-570-AP to the PC,
e Open up Quartus II,
e Open the programmer tool

If the project created in the previous sections is not open, open it. Click on the
Programmer button.

Page

57

EARTIHPEOIPPLLE
TECHNOLOGY

Analog Monitor Project User Manual

K ot L ettt R~ ko B

Search altera.com

File Edit View Project gnments Processing Tools Window Help &

DB % 2@ 9 o [ersmaruziop - S - S)
Project Navigator 1ax| @ Compilation Report - EFT_570_AP_U2_Top
Entity Table of Contents ia

Ay MAX I EPM570T100CS
¢ 4 EPT_S70_AP_U2_Top

[EE Flow Summary

=2 Flow Settings

= Flow Non-Default Global Settings
T Flow Elapsed Time

AT TIONCE

Flow Status
Quartus 11 64-Bit Version
Revision Name
Top-level Entity Name

Successful - Wed Mar 13 22:00:21 2013

12.1 Build 243 01/31/2013 5P 1 S) Web Edition
EPT_570_AP_UZ Top

EPT_570_AP_U2 Top

B2 Flow 05 Summary [ty .
= Device EPMST0T100CS
[E| FlowLeg : il
b 1 Analysis & Synthesis Timing Models Final
- ysis S5y Total logic elements 557 /570 (98 %)
b
Fitter Total pins 51/76 (67 %)
v O3 Assembler Total virtual pins 0
5 o + || 232 TimeQuest Timing Analyzer UFM blocks @)
> Hierarchy les | ¥ Desion Units | (e » O EDA Netlist Writer
[Tasks 3ax]|
Flow: |Compiation ~| [customize... |
Task
L 4 B Compile Design o
< b B Analysis & Synthesis o
< b B Fitter (Place & Route) o
| &4 b B Assembler (Generate programmin o
¥ b B TimeQuest Timing Analysis o
< b B EDA Netlist Writer o
4 Program Device (Open Programmer)
« m V[« i v
X B @& @ T s> ~
7 ID Message o

o

332102 Design is not fully constrained for hold requirements

Quartus IT 64-Bit TimeQuest Timing Analyzer was successful.

0 errors,

5 warnings

i
) N ——
[N Running Quarcus IT 64-Bit EDA Nectlist Writer
@ Command: quartus_eda --read settings_files=off --write_settings_files=off EPT_570_AP U2_Top -c EPT_570_AP_UZ_Top
(i) 202018 Generated files "EPT_S70_AP U2 Top.vho" and "EPT_570_AP_U2_Top vhd.sdo" in directory "C:/altera/12.lspl/quartus/qdesigns
b @ Quartus II 64-Bit EDA Netlist Writer was successful. 0 errors, 0 warnings
o () 293000 guartus II Full Compilation was successful. 0 errors, 47 warnings 3
i -
ﬁ « I] *
gL System]\ processing (134) /
100% 00:00:24

The Programmer Window will open up with the programming file selected. Click on the

Hardware Setup button in the upper left corner.

-
Ui Programmer - C/alteraf12.1sp1/quartus/qdesigns/EPT_Transfer_ Test/EPT_570_AP_U2 Top - EPT_570_AP_U2 Top - [Chainl.cdf]

-:--Elg

File Edit View Processing Tocls Window Help 5

Search altera.com

Hardware

— ———
2, Hardware Setup...
‘to allow background programming (for MAX II and MAX V devices)

Mode: |JTAG -

Progress:

File Device Checksum

i Start
| o Stop
1| [g% autoDetect

| ¢ Delete

Usercode

Blank-
Check

Program/ Examine

Configure

Verify Security

Bit

li: change Fie...

[save File
1 up

1% Down

The Hardware Setup Window will open. In the “Available hardware items”, double

click on “EPT-Blaster v1.3b”.

Page

58

EARTHHPEOIPLE

TECHNOLOGY

Analog Monitor Project User Manual

%Hardware&emP | 2 |

Hardware Settings JTAG Settings

Select a programming hardware setup to use when programming devices. This programming
hardware setup applies only to the current programmer window.

Currently selected hardware: [No Hardware -]

Available hardware items

Hardware Server Port Add Hardware. ..

< -Blaster v1.3b Local MBUSB-0

Remove Hardware

If you successfully double clicked, the “Currently selected hardware:” dropdown box
will show the “EPT-Blaster v1.3b”.

rw Hardware Setup ﬂ

Hardware Settings | JTAG Settings |

Select a programming hardware setup to use when programming devices. This programming
hardware setup applies only to the current programmer windaow.

e
Currently selected hardware: (EPT-Blaster v1.3b [MBUSB-OD v]
[

Available hardware items

Hardware Server Port Add Hardware. .. I

EPT-Blaster v1.3b Local MBUSE-0

Remaove Hardware

| |

Click the “Close” button.

Next, selet the checkbox under the “Program/Configure” of the Programmer Tool. The
checkboxes for the CFM and UFM will be selected automatically.

Page

59

EAIRTIHPEOIPLE

TECHNOLOGY

Analog Monitor Project User Manual

Ui Programmer - Ci/altera/12.15p1/quartus/qdesigns/EPT Transfer_Test/EPT_570_AP_U2 Top - EPT_570_AP_U2_Top - [Chain2.cdfl* =]

File Edit View Processing Tools Windew Help 5

Search altera.com

@

&, Hardware Setup....| EPT-Blaster v1.3b [MBUSE-0] vode: [mas ¥

[7] Enable real-time ISP to allow background programming (for MAX IT and MAX V devices)

Progress:

File Device Checksum Usercode
i i st0p output_files/EPT_570_A... EPMS570TL00 002CD72E FFFFFFFF
CFM
I @ Auto Detect UFM
| X Delete

0| M AddFile...

{4 Change File...

T

Verify ~ Blank Examine S
Check
a a
O O
]]

b save File
(2 Add Device...
tiup

J Down

i

Click on the Start button to to start programming the CPLD. The Progress bar will

indicate the progress of programming.

- - -
8 Programmer - C:/altera/12.15p1/quartus/qdesigns/EPT Transfer_Test/EPT_570_AP_U2_Top - EPT_570_AP_U2_Top - [Chain.caf (sl o= eses

File

Edit View

Processing

Tools

Window Help 5

@

Search altera.com

2 Hardware Setup...

P T-Blaster v 1.3b [MBUSE-0]

Mode:

JTAG

Enable real-time ISP to allow background programming {for MAX IT and MAX V devices)

m File Device Checksum | Usercode Program/ Verify = Blank- Examine S
| DSE onfigure e
output_files/EPT_570_A... EPM570T100 002CD72E FFFFFFFF
l CFM
I @l Auto Detect UEM
i 3 Delete
M | M AddFile...
B change File...
it Change File. . .
(4 save Fie i
% Add Device... D
T up
DI
1 pown — —|

When the programming is complete, the Progress bar will indicate success.

Page
60

h EARTIHPEOPLE

TECHNOLOGY

Analog Monitor Project User Manual

Up Programmer - Cyaltera/121sp1/quartusfqdesigns/EPT Data_Collector/EPT_570_AP_U2_Top - EPT 570_AP_U2 Tap - [ChainZ.cdfl* (sl (=) e

File Edit View Processing Tools Window Help 5 Search altera.com)
EPT Blaster v1.3b [MBUSE-O) Mode: Progress: 100% (Successful)
[C] Enable real-time ISP to allow background programming (for MAX It and MAX V devices)
m File Device Checksum Usercode Program/ Verify Blank- Examine Sex
Configure Check
gih stop output_files/EPT_570_A... EPM570T100 00313426 FFFFFFFF [= i
CFM] O
B B
Delete
[add File...
" Change File...
= < 1. »
A Save File o
T PATERAY
oI
JHpown &

At this point, the EPT-570-AP is programmed and ready for use.

5 PC: C# Project Design

The final piece of the Analog Monitor Project is the PC application. This application
will fetch the data from the CPLD of the EPT-570-AP and display it on the screen. It
includes user code, windows form, and the Active_Host DLL.

ACTIVE_TRANSFER
MODULE Y- DATA RCVD
e EVENT!
ADDRESS [2]

ACTIVE_TRANSFER _ ACTIVE_HOST
LIBRARY DLL

The Active_Host DLL is designed to transfer data from the CPLD when it becomes
available. The data will be stored into local memory of the PC, and an event will be
triggered to inform the user code that data is available from the addressed module of the
CPLD. This method, from the user code on the PC, makes the data transfer transparent.
The data just appears in memory and the user code will direct the data to a textbox on
the Windows Form.

The Analog Monitor project will perform the following functions.
Find EPT-570-AP Device.

Open EPT-570-AP Device.

Start the Arduino data collection process.

Wait for data from EPT-570-AP.

Decode byte position, upper or lower.

Display data from EPT-570-AP in textbox.

Page

61

A EARTIHPEOPLE

TECHNOLOGY

Analog Monitor Project User Manual

Ctt WINDOW FUNCTIONALITY

Initialize Variables, Controls, Events, Read Callback
Function

{ USB TRANSFER J Select EPT-570-AP Device

Open EPT-570-AP Device

Send Start Control to EPT-570-AP Device

OWait for Read Callback Event —l

ADDRESS SELECTION

BYTE SELECTION
READ UPPER BYTE FROM TRANSFER ENDTERM
READ LOWER BYTE FROM TRAMNSFER ENDTERM

UPDATE TEXTBOX WITH 10 BIT ADC WVALUE

5.1 Coding the C# Project

The user code is based on the .NET Framework and written in C#. The language is great
for beginners as it is a subset of the C++ language. It has the look and feel of the
familiar C language but adds the ease of use of classes, inheritance and method
overloading. C# is an event based language which changes the method of writing code
for this project. You will need to get some background knowledge in coding with C#
and the .NET Framework on the PC. For a better description of event based language
programming and C#, see the following for a turtorial

http://www.homeandlearn.co.uk/csharp/csharp.html

5.1.1 C# Project Creation

To start the project, use the wizard to create project called “EPT_Analog_Monitor”.
When the wizard completes, the C# Express main window will look like the following.

Page

62

http://www.homeandlearn.co.uk/csharp/csharp.html

EARTHHPEOIPLE

TECHNOLOGY

Analog Monitor Project User Manual

| search Installed Templates

Installed Templates

: #
_ch| Windows Forms Application Visual C# Type: Visual C
Visual ¥ =
Online Templates E* WPF Application Visual C#

£
5 Console Application Visual G
@ Class Library Visual C#

\3‘ WPF Browser Application Visual C# u\(k\y‘
isual

and

[oty b =
ing

EPT_Analog_Monitor

rrrrr

The setup statements create the namespace and the class for the project. There are
several other files that are created by the wizard such as Form1.Designer.cs,
Program.cs, Form1.resx. We don’t need to go into these support files, we will just focus
on the Form1.cs as this is where all the user code goes.

Click on File->Save Project as. Browse to C:\Users\<user name>\Documents\Visual
Studio 2010\Projects, and click Select Folder. Click the Save button.

EPT_Analog_Monitor - Microsoft Visual C# 201 =N

Fle Edit View Project Buld Debug Dats Tools Window Help
iPa-Sdd s a9 -o- b |Debug -/ e -| | |btnCpenDevice B o bR

P e AT w2 E e R e | HE| w2

-l Solution Explorer - 1 % [FormL.cs [Design] > - Properties - 1
2| SE EPT_Analog_Monitor Project Prop ~
Aol e gl [

Project file EPT_Analog_Monit}

Ci\Users\NelsonsTrfgr\Documents\Visual Studio 2010\Projects

EPT_Analog_Monitor Create directory for solution

Description Fle Line ” Column Project

Locate the \Projects_ActiveHost_64Bit\EPT_Analog_Monitor\ folder in the
UNO_ANALOG_MONITOR_PROJECT_CD. Copy the following files:

e active_transfer_x64.cs

e Forml.cs

Page

63

e Forml.Designer.cs
e Forml.resx

e Program.cs

e ScaleFactorMenu.cs

EARTHHPEOIPLE

TECHNOLOGY

Analog Monitor Project User Manual

Open a Windows Explorer window and browse to

C:\Users\NelsonsTrfgr\Documents\Visual Studio 2010 \Projects \EPT_Analog_Monitor

\EPT_Analog_Monitor. Paste the files to this folder.

ggal . ¥ Libraries » Documents » My Documents » Visual Studio 2010 » Projects » EPT_Analog_Monitor

| ©rganize ~ oo Open E-mail Burn Mew folder
I 4). Project . ;
o Documents library
. BridgePort R2D Comms EPT_Analog_Monitor
I fy EBx_MCA r =
4 | EPT_Analeg_Monitor B Name
4 . EPT_Analeg_Monitor | .. obj
b bin .. Properties
bl obj] active_transfer xb4.cs
.. Properties 2] EPT_Analog_Moniter.csproj
4 |, EPT Transfer Test 2] EPT_Analog_Manitor.csproj.user
> . EPT_Transfer Test il] Forml.cs
S an -
e 6 items selected State: 2B Shared Size: 734 KB Shared with
== Date modified: 3/30/20131:12 AM - 5/2... Date created: 5/22/201311:13 PM

In the Solution Explorer Window, right click on the project name,

EPT_Analog_Monitor and select Add->Existing Item

.#| EPT_Analog_Monitor - M

File

soft Visual C¥ 201(

Edit View Project Build Debug Data Tools Window Help
P S| & a9 - S5 P [Debug
PO & | TF e b |23 PO ooty e & | & AT 2 ek |[H[F]| Ch G| 2.

|| @ [bn

-| |88

Solution Explorer

=i

e

> 0 x

o

3
E‘T [Solution 'EPT_Analog_Monitor [a2 Form1 [=@]=]
LM . (5 EPT_Analog Monitor
1:";_: | = Properties | [£¥ Build -
o - (= References Rebuild
g [Forml.cs .
: 4] Program.cs E; L
E Add ¥ | i Newltem.. Ctrl+Shift+A
Add Reference... [5] Existing tem... Shift+ Alt+A
Add Service Reference... 4 Mew Folder
Set as StartUp Project 2] Windows Form...
Debug * | # UserControl...
& Cut Crl+X %2 Class... Shift+Alt+C
2 Paste Ctrl+V
X Remove Del
Ri
. =) ename]
Ea Solution Exp... [Properties Alt+Enter
Select the following files:
e active_transfer_x64.cs
e ScaleFactorMenu.cs
Page

64

Click Add.

EARTHHPEOIPLE

TEGCHN

<« Proj

L#| Add Existing Ttem - EPT_Analog_Manitor

OLOGY

Analog Monitor Project User Manual

ects » EPT_Analog Monitor » EPT Analog Monitor »

Organize =

| Projects

w0 Favorites
B Desktop

& Downloads
3% Dropbox

%] Recent Places

4 Libraries
[% Dacuments
&) Music
[Pictures

B videos

[Microsoft Visual C# 2010 Express =

New folder

Documents library
EPT_Analog_Monitor

Mame

. bin
obj
Properties
] active_transfer x64.cs
] Forml.cs
& Forml Designer.cs
52 Forml.resx
&) Program.cs

Arrange by:

Date modified

5/22/201311:00 PM
5/22/201311:00 PM
5/22/201311:00 PM
5/22/2013 4:24 PM
5/22/2013 4:28 PM
4/28/201312:48 AM
4/28/201312:48 AM
3/30/20131:12 AM

Folder ~

Type
File folder
File folder

File folder

Visual C# Source
Visual C# Source
Visual C# Source
NET Managed Re

Visual C# Source

|] ScaleFactorMenu.cs

4/28/2013 2:14 PM

Visual C# Source

- m

File name: "ScaleFactorMenu.cs" "active_transfer_64.cs”

~ | Visual C# Files (*.cs;" resx*.setti »
E

Add

b

5.1.2 C# Project Environment Setup

The project environment must be set up correctly in order to produce an application that
runs correctly on the target platform. Visual C# Express defaults new projects to 32 bits.
If your OS is a 64 bit platform, use the following directions to set up a 64 bit project.
First, we need tell C# Express to produce 64 bit code if we are running on a x64

platform. Go to Tools->Settings and select Expert Settings
= Microsoft Visual C# 201¢
File Edit View Refactor Project Build Debug Data | Tools | Window Help

X

Go to Tools->Options, locate the “Show all settings” check box. Check the box.

I

=S EEE
; Solution 'EPT_Analog_Monit
(2 EPT_Analog_Menitor
> [=d Properties
> [sal References

4] active_transfer_x64.cs
> [E] Formles

#] Program.cs

¢#] ScaleFactorMenu.cs

4 (I} +

£ Solution Exp...

|9 - - A- 5 T Connect to Database..
2O EE & B

gl Forml.cs < JEal

Code Snippets Manager...

Choose Toclbox ltems...

AGEPT_Analog Mon| i Extension Manager..
o Slusing Syster

using Syster

External Tools...

using Syster Eetinas
using Syster Customize...
using Syster Options...

using Systes —

Cr— e

Ctrl+K, Ctrl+B

Analog_Monitor()

v Basic Settings
v | Expert Settings

Reset...

using System.Text;

using System.Windows.Forms;

using System.Threading;

using System.Runtime.IntercpServices;
using System.Diagnostics;

“Inamespace EPT_Analog_Menitor

= public EPT_Analog_Moniter()

{

InitializeComponent();

5 public partial class EPT_Analog Monitor : For

Import and Export Settings...

00% - ¢

Page

65

EAIRTIHPEOIPLE

TECHNOLOGY

Analog Monitor Project User Manual

4 Environment Recent files
General M items shown in Window menu
Fents and Colors
Keyboard 10 iterns shown in recently used lists
1> Text Editor
1» Debugging

Visual experience

|¥] Automatically adjust visual experience based on client performance
Enable rich client visual experience
Use hardware graphics acceleration if available

Visual Studio is currently using hardware-accelerated rendering. The visual
experience settings automatically change based on system capabilities.

Show status bar
Close button affects active tool window enly
[] Auto Hide button affects active tool window only

Restore File Associations

ok |[cancel |

In the window on the left, go to “Projects and Solutions”. Locate the “Show advanced
build configurations” check box. Check the box.

Options I — l 7 X3 |

 Environment Projects location:

4 Projects and Solutions c\users\nelsonstrfgridocumentsiwvisual studic 2010\Projects E]
General .
Build and Run User project templates location:

\ Text Editor chusers\nelsonstrfgridocuments\visual studio 2010\Templates\ProjectTemp E]

> Debugging User item templates location:

b Database Tools cusers\nelsonstrfgridocumentsiwvisual studie 2010\ Templates\ItemTemplat E]

[+ Text Templating

[» Windows Forms Designer

Always show Error List if build finishes with errors
[Trpck Activedbermmn-Salution Explorer

Show advanced build configurations

[7] Save new projects when created

[#] Warn user when the project location is not trusted
[7] Show Output window when build starts
Prompt for symbelic renaming when renaming files

Show all settings

ok][Cancel

Go to Build->Configuration Manager.

Page

66

EAIRTIHPEOIPLE

TECHNOLOGY

Analog Monitor Project User Manual

.=#| EPT_Analog_Monitor - Microsoft Vis

File Edit View Refactor Project | Build | Debug Data Tools Window Help
iRl [AR REEr S Build Solution fs
- Rebuild Selution

B [Publish EPT_Analog_Monitor

Configuration Manager...

=& | = E

m Selution 'EPT_Analog_Menitor Flusing System;

g_Monitor()

4 @ EPT_Analog_Meonitor using System.Collections.Generic;
= Properties using System.ComponentModel;
b [i3] References using System.Data;

] active_transfer_bd.cs uSJ:.ng System.[)r:awing;
using System.Lling;
b [E] Forml.cs using System.Text;
] Program.cs using System.Windows.Forms;
#] ScalefactorMenu.cs using System.Threading;
using System.Runtime.InteropServices;
|using System.Diagnostics;

Elnamespace EPT_Analog_Monitor

K
E|| public partial class EPT_Analeg Monitor
1
El public EPT_Analog_Monitor()
{
InitializeComponent();

1 m 3 -
£ Solution Exp... [NEEEANTIEN 100 % ~ ¢ ma] C

In the Configuration Manager window, locate the “Active solution platform:” label,
select “New” from the drop down box.

Configuration Ma
Active solution configuration: Active solution platform:

[Releasa hd] &ﬁ ']
*B6
Project contexts (check the project configurations to build or dep
Project Cenfiguration <Edit..»
EPT_Analog_Monitor Release |z| xB6 lz‘

In the New Solution Platform window, click on the drop down box under “Type or
select the new platform:” and select “x64”.

Page

67

EARTIHPEOIPPLLE
JTECHNOLOGY

Analog Monitor Project User Manual

= B = S
Conﬁgumt’lr:l Manager - e e W W

Active solution configuration: Active solution platform:

Release V] [hﬁﬁ

Project contexts (check the project configurations to build or deploy):

Data_Collector

Type or select the new platform:

Any CPU
Itanium
|

Create new project platforms

Click the Ok button. Verify that the “Active Solution Platform” and the ‘“Platform” tab

are both showing “x64”.

Configuration Mal m
Active solution cenfiguration: mﬁ(}rm:
(e e N\ 3
Project contexts (check the project configurations to buildfor deploy): \

Project Configurati Platform
Data_Collector Release E‘ bd

Click Close.

Then, using the Solution Explorer, you can right click on the project, select Properties

and click on the Build tab on the right of the properties window.

Page

68

EARTHHPEOIPLE

TECHNOLOGY

Analog Monitor Project User Manual

.=#| EPT_Analog_Monitor - Microsoft Vi

File Edit View Refactor Project Build Debug Data Tools Window Help
E-.Eﬂlﬁ]'ljlgﬂ|*‘:iﬁﬁ|H]'rJ"—_:.'I}|D|RE|EESE '||)|64
PO R e EEEZ 2G5,

8 Solution Explarer v 1 X} Forml.es X
= = —
e Sl e _Analog_Monitor.EPT_f ~| =W _Analog_Monitor(-
p i [2] = E EPT_Analog_MonitorEPT_ EPT_Analog_Moni
E.— ; Selution 'EPT_Analog_Monitor —lusing System; <+
E_‘ 4 E EPT_Analor T nsinm Custam Callactions.Genericy .
T—% . [Propert Build tModel; =
o > 3l Referen Rebuild
A El activet (@ publish..
= » [=] Forml.
:.E—'_ #] Prograr Add ’ Forms;
2 [E] ScaleFa Add Reference... g
Add Service Reference... InteropServices;
. ics;
Set as StartUp Project
Debug » Monitor
o Cut ks lass EPT_Analog_Monitor
4 Paste Ctrl+V
X Remove Del mlog Monitor()
Rename eComponent();
N Properties Alt+Enter N
L"-’f*g Selution Exp... s ay L] L-

Verify that the “Platform:” label has “Active (x64)” selected from the drop down box.

EPT_Analog_Menitor - Mic

|| File Edit View Project Build Debug Data Tools Window Help

é@ﬂ'lﬁgﬁ‘&—ﬁ_ﬂl*’?'w"__:";‘P‘Release 'Hxﬁ-d '||w|btn0penDevicE 'llhﬂfﬁ

fif Solution Explorer MRl EPT Analog Monitor X [[Reiiies Forml.cs [Design] -
a’.— :; Solution 'EPT_Analog_Monitor Application
W;‘:‘ 4 [T EPT_Analog_Monitor Configuration: | Active (Release) hd Platform: | Active (x64) hd
f_‘i: > [=d Properties Build
i » 3] References T B General -
A4 [5] active_transfer_x6d.cs e B
= b @ Forml.cs Debug Conditional compilation symbols: ‘
a n L
3 2 Program.cs [Define DEBUG constant 3
8 [=] ScaleFactorMenu.cs Resources
Define TRACE constant
Setti b
res [C] Allow unsafe code
Reference Paths Optimize code
Signing Errors and warning
¥
Suppress warnings: i
QT | . 4 1 +

ew

E‘E Solution Exp...

Next, unsafe code needs to be allowed so that C# can be passed pointer values from the
Active Host.

Locate the “Allow unsafe code” check box. Check the box

Page

69

EARTHHPEOIPLE

TECHNOLOGY

Analog Monitor Project User Manual

EPT_Analog_Monitor®

Application

Configuration: ’Acti\.re (Release) v] Platform: ’Acti\.re (64 v]

Build™

Build Events General

Debug Conditional compilation symbols:

m

[Define DEBUG constant
Resources
Define TRACE constant

Settings
g Allow unsafe code

Reference Paths Optimize code
Signing Errors and warnings
Security Warning levek

Suppress warnings: il

5.1.3 C# Object Initialization
Now we are ready to start coding.

Next, we add two classes for our device. One class stores the information useful for our
device for Transmit to the EndTerms such as, address of module, length of transfer etc.

f//Create an array of the Transfer Class for device
Transfer[] EPTTransmitDevice = new Transfer[8];

The next class is used to store parameters for receiving data from the device.

//Create a Receive object of the Transfer Class.
Transfer EPTReceiveData = new Transfer();

The first function called when the Windows Form loads up is the EPT_Analog_Monitor
_Load(). This function is called automatically upon the completion of the Windows
Form, so there is no need to do anything to call it. Once this function is called, it in turn
calls the ListDevices().

// Main object loader
private woid EPT_Analog Monitor Load(ocbject sender, System.Eventirgs e)

{

/f Call the List Devices functian
ListDevices();

5.1.4 C# Project ListDevices
The ListDevices() function calls the EPT_AH_Open() function to load up the

Page

70

EARTHHPEOIPLE

TECHNOLOGY

Analog Monitor Project User Manual

CH# WINDOW FUNCTIONALITY

Initialize Variables, Controls, Events, Read Callback
Function

{ USBTRANSFER Select EPT-570-AP Device

Open EPT-570-AP Device

Send Start Control to EPT-570-AP Device

OWaithr Read Callback Event —l

ADDRESS SELECTION

BYTE SELECTION

READ UPPER BYTE FROM TRANSFER ENDTERM
READ LOWER BYTE FROM TRANSFER ENDTERM

UPDATE TEXTBOX WITH 10 BIT ADC VALUE

ActiveHost DII. Next, it calls EPT_AH_QueryDevices() which searches through the
registry files to determine the number of EPT devices attached to the PC. Next,
EPT_AH_GetDeviceName() is called inside a for loop to return the ASCII name of
each device attached to the PC. It will automatically populate the combo box,
cmbDevList with all the EPT devices it finds.

// List Devices| function
private unsafe Int32 ListDevices ()
1
Int32 result;
Int32 num_devices;
Int32 iCurrentIndex;

// Open the DLL

result = EPT_AH Open(null, null, null);

if (result != @)
1
MessageBox.Show("Could not attach to the ActiveHost library™);
return @;

}

// Query connected dewvices
num_devices = EPT_AH_QueryDevices();

//Prepare the Combo box for population
iCurrentIndex = cmbDevlist.SelectedIndex;
cmbDevlist.Items.Clear();

/{ Go through all available devices
for (device index = @; device index « num_devices; device index++)

1
String str;
str = Marshal.PtrToString&nsi((IntPtr)EPT_AH_GetDeviceName(device_index));
cmbDevLlist.Items.Add(str);
¥
return @;

Page

71

EARTHHPEOIPLE

TECHNOLOGY

Analog Monitor Project User Manual

5.1.5 C# Project Open Device
The user will select the device from the drop down combo box. This value can be sent

C#f WINDOW FUNCTIONALITY
Initialize Variables, Controls, Events, Read Callback
Function
<@> Select EPT-570-AP Device
Open EPT-570-AP Device

Send Start Control to EPT-570-AP Device

OWaitfur Read Callback Event —l

ADDRESS SELECTION

BYTE SELECTION
READ UPPER BYTE FROM TRANSFER ENDTERM
READ LOWER BYTE FROM TRAMSFER ENDTERM

UPDATE TEXTBOX WITH 10 BIT ADC VALUE

to the OpenDevice() function using the button Click of the Open button.

// Open the device

if (EPT_AH_OpenDeviceByIndex(device_index) == false)
{
printf(“"Could not open device ®s\n", EPT_AH_GetDeviceName(device_index));
exit(e);

{l| USE Fioh Speed Tander Bl ~
| Open | Close

The device_index variable is used to store the index of the device selected from the
combo box. This variable is passed into the EPT_AH_OpenDeviceBylIndex(). This
process is started by the user clicking on the “Open” button. If the function is
successful, the device name is displayed in the label, labelDeviceCnt. Next, the device
is made the active device and the call back function is registered using the
RegisterCallBack() function. Finally, the Open button is grayed out and the Close
button is made active.

Page

72

EARTHHPEOIPLE

TECHNOLOGY

Analog Monitor Project User Manual

// Open the device
public unsafe Int32 OpenDevice()
1
device_index = (int)cmbDevlist.SelectedIndex;
if (EPT_AH_OpenDeviceByIndex(device index) == @)
{

String message = "Could not open device ™ +
Marshal.PtrToStringAnsi((IntPtr)EPT_AH GetDeviceName(device index)) + ", " +
Marshal.PtrToStringAnsi((IntPtr)EPT_AH GetDeviceSerial(device_index));

MessageBox.Show(message);

return @;

}

else

labelDeviceCnt.Text = "Connected to device " +
Marshal.PtrToStringfAnsi((IntPtr)EPT_AH GetDewviceName(device_index)) + ", " +
Marshal.PtrToStringAnsi((IntPtr)EPT_AH GetDeviceSerial(device_index));

¥

//{ Make the opened device the active device
if (EPT_AH_SelectActiveDeviceByIndex(device index) == @)

1
String message = "Error selecting device: s " +
Marshal.PtrToStringAnsi((IntPtr)EPT_AH_GetlLastError());
MessageBox.Show(message) ;
return 8;

1

//{ Register the read callback function
RegisterCallBack();
btnOpenbevice.Enabled = false;
btnCloseDevice.Enabled = true;

return 8;

5.1.6 C# Project Callback Initialization

Next, the callback function is populated. This function will be called from the Active
Host dll. When the EPT Device has transferred data to the PC, the callback function
will do something with the data and command.

Page

73

h EARTIHPEOPLE

TECHNOLOGY
Analog Monitor Project User Manual

// Actual callback function which will read messages coming from the EPT device
unsafe void EPTReadFunction(Int32 device_id, Int32 dewice_channel, byte command, byte payload,

{

byte* message = data;

// select current device
EPT_AH SelectActiveDeviceByIndex(device_id};

//Aadd command and device_channel to the receive object
EPTReceiveData.Command = (({command & COMMAND DECODE) >»> 3);
EPTReceiveData.Address = device_channel;

ffCheck if the command is Block Receive. If so,
ffuse Marshalling to copy the buffer inte the receive
/fobject
if (EPTReceiveData.Command == BLOCK_OUT_COMMAND)
1
EPTReceiveData.Llength = data_size;
EPTReceiveData.cBlockBuf = new Byte[data_size];

Marshal.Copy(new IntPtr{message), EPTReceiveData.cBlockBuf, @, data_size);

}

else

1
¥

EPTParseReceive();

EPTReceiveData.Payload = payload;

Because the callback function communicates directly with the dll and must pass
pointers from the dll to the C#, marshaling must be used. Marshaling is an advanced C#
topic and will not be covered in this manual. We will let the callback function work in
the background and we only need to use the EPTParseReceive() function to handle
incoming data.

5.1.7 C# Project Controls

Controls such as buttons are added to the Form1.cs[Design] window which allow

turning on and off signals. These include
e btnOk

btnCancel

btnOpenDevice

btnCloseDevice

btnStart

btnStop

btnSetScaleFactor

btnResetBlockl .. 6

Textboxes are used to display information on the Windows form. These textboxes are:

Page

74

2 EARTHPEOPLLE

TECHNOLOGY

Analog Monitor Project User Manual

e cmbDevList
e tbMonitorl
e tbMonitor2
e tbMonitor3
e tbMonitor4
e tbMonitor5
e tbMonitor6

5.1.8 C# Project Buttons

Although, the C# language is very similar to C Code, there are a few major differences.
The first is C# .NET environment is event based. A second is C# utilizes classes. This
guide will keep the details of these items hidden to keep things simple. However, a brief
introduction to events and classes will allow the beginner to create effective programs.

Event based programming means the software responds to events created by the user, a
timer event, external events such as serial communication into PC, internal events such
as the OS, or other events. The events we are concerned with for our example program
are button clicks or dropdown box clicks. The user events occur when the user clicks on
a button on the Windows Form or selects a radio button. We will add a button to our
example program to show how the button adds an event to the Windows Form and a
function that gets executed when the event occurs.

The easiest way to add a button to a form is to double click the Form1.cs in the Solution
Explorer. Click on the "# button to launch the Toolbox.

Page

75

EARTHHPEOIPLE

TECHNOLOGY

Analog Monitor Project User Manual

T T S
File Edit View Project Debug Data Tools Window Help
i S| $]9 - ® | b | [toolip -] | A e B -

Pl & 2| T o |3 S B e 20 R @ | 2 2% 2¢ ey |[H [G| 2.

fi¥ Solution Explorer * 1 3 Forml.es Forml.Designer.cs Forml.cs [Design] ¢ [EEOTRIGHE ¥ ~ Toolbox > @ x
g 31| = . l:)é\llWindmz; Fum:; B
E’T - Solution 'EPT_Transfer_Test' (1 project) o Active Host EI@ ommon Controls
"‘g, 4 [EPT Transfer Test Kk Pointer 3
'Ei > [=dl Properties = Button
o » (i3] References v CheckBox L
(5] active_transfer.cs CheckedListBox
a4 [E] Forml.cs 4
i E8 ComboBox
% Forml.Designer.cs DsteTimePick
‘%] Forml.resx T DateTimePicker
#] Program.cs Transfer Single Byte Transfer Multiple Bytes A Label
Virie LoopBack A LinklLabel
=8 ListBox
Send Byte 255 Address 2 20 Listview
Receive Byte [#] MaskedTextBox
m MonthCalendar
== Motifylcon
@ timerUSE [[Z MumericUpDown
(@ PictureBox
4 1 +
e @0 ProgressBar
ﬂ’a Solution Explorer L3 —~ il
Error List ~ 0%
& 0Errors | 1\ 2 Warnings | (i) 0 Messages
Description File ° Line Column Project °

IEY LU & Find Results

Ready

Locate the button on the Toolbox, grab and drag the button onto the Form1.cs [Design]
and drop it near the top.

Page

76

TECHNOTLDO

EARTHHPEOIPLE

GY

Analog Monitor Project User Manual

File Edit View Project Debug Data Format Tools Window

Ll S e | % a9 - | | [tootip

PEE |l & S| e b | o B e e B B
-l;l_:.:'

Solution Explorer

2lazl=EE

Forml.cs™

Forml.Designer.cs™

=T}

Forml.cs [Design]” X [ElaGURIELE e

; Solution "EPT_Transfer_Test' (1 project)
4 E EPT_Transfer_Test
> [=d| Properties
> [:3] References
[5] active_transfer.cs
4 [Z] Formles
‘#] Forml.Designer.cs
¥ Formil.resx
4] Program.cs

al Active Host

1210]dig 3seqejeq Sy

Transfer Single Byte

-
Close

White:

Send Byte 255
Receive Byte

3 timerUss

< .] +
3] Solution Explorer [N0CE

Error List
QD 0Errors | 1y 2 Wamings | (i) 0 Messages

Description

PGS B Find Results

Ready

LoopBack

Address 2

=

(2) Number

) Senal

() Description

Transfer Multiple Bytes

File

-
Line

Toolbox -~ 0 x

1> All Windows Forms

4 Commen Controls
k Pointer
Button
CheckBox
CheckedListBox
B ComboBox
‘@ DateTimePicker
A Label
A LinkLabel
[#2 ListBox

ListView

MaskedTextBox
m MonthCalendar
E Motifylcon
[EZ MumericUpDown
[& PictureBox
@D ProgressBar
)

Column Project °

Go to the Properties box and locate the (Name) cell. Change the name to
“btnOpenDevice”. Locate the Text cell, and change the name to Open.

Page

77

» B

m

EARTHHPEOIPLE

TECHNOLOGY

Analog Monitor Project User Manual

W EPT Transter Test - Mig

[File Edit View Project Debug Data Format Tools Window Hep |
il (S] & a0 e - b | [[tooltip -]) A e Bl B

P2 & ol T o i g | oo 35 o 3 ar | FH [| 2| 2

Solution Explorer > 03X Forml.cs*

Sl E|EE

Forml.Designer.cs*

Forml.cs [Design]* X [ElafURiELE =X

; Solution 'EPT_Transfer_Test' (1 project)

al Active Host

~ Toolbox
> All Windows Forms

" |§ 4 Common Controls

Pointer

4 (5 EPT_Transfer_Test
> [=d| Properties
. [i3] References M
@ active_transfer.cs
4 [E] Forml.cs
%] Forml.Designer.cs
%] Forml.resx
] Program.cs

Button
CheckBox
CheckedListBox

1210)dig 3seqeieq Sy

ComboBox
DateTimePicker

Transfer Single Byte Transfer Muttiple Bytes Label
LinkLabel

Wie (LospBack] wue by |
ListBox

Send Byte 255 Address 2 22 |ihfiew
Receive Byte

EHerdlBEE

MaskedTextBox
MonthCalendar
Notifylcon

MNumericUpDown

) timerUss
PictureBox

N = - ProgressBar
'—‘3 Solution Explorer [l SeaFEAYEN X

b B Bl G5 el B[

Error List
QD 0Errors | _1\ 2 Wamnings | (i) 0 Messages

Description : Column Project ’

3 Error List LML a1
Double click on the Open button. The C# Explorer will automatically switch to the
Form1.cs code view. The callback function will be inserted with the name of the button
along with “_click” appended to it. The parameter list includes (object sender,
System.EventArgs e). These two additions are required for the callback function to
initiate when the “click” event occurs.

Private void btnOpenDevice_click(object sender, System.EventArgs e)

There is one more addition to the project files. Double click on the Form1.Designer.cs
file in the Solution Explorer. Locate the following section of code.

iy

/{ btnOpenDevice

I

this.btnOpenDevice.lLocation = new System.Drawing.Point(248, 13);
this.btnOpenDevice.Name = "btnOpenDevice™;

this.btnOpenDevice.Size = new System.Drawing.Size(5@, 23);
this.btnOpenDevice.TabIndex = 2;

this.btnOpenDevice.Text = "Open”;

this.btnOpenDevice.UseVisualStyleBackColor = true;

this.btnOpenDevice.Click += new System.EventHandler(thils.btnOpenDevice Click);

This code sets up the button, size, placement, and text. It also declares the
“System.EventHandler()”. This statement sets the click method (which is a member of

Page

78

8 EARTIHPEOPLE
7 T E C N

H OLOGY

Analog Monitor Project User Manual

the button class) of the btnOpenDevice button to call the EventHandler —
btnOpenDevice_Click. This is where the magic of the button click event happens.

private woid btnOpenDevice Click(object sender, Eventirgs e)

1
J//Open the Device
OpenDevice();
1blDeviceConnected.Text = "Device Connected”;

}

private void btnCloseDewvice_Click(object sender, Eventhrgs e)

1

EPT_AH CloseDeviceByIndex(device index);
btnOpenDevice.Enabled = true;
btnCloseDevice.Enabled = false;

1blDeviceConnected.Text = " ";

}

When btnOpenDevice Click is called, it calls the function “OpenDevice()”. This
function is defined in the dll and will connect to the device selected in the combo box.
This is a quick view of how to create, add files, and add controls to a C# project. The
user is encouraged to spend some time reviewing the online tutorial at
http://www.homeandlearn.co.uk/csharp/csharp.html to become intimately familiar with
Visual C# .NET programming. In the meantime, follow the examples from the Earth
People Technology to perform some simple reads and writes to the EPT USB-CPLD
Development System.

The btnOk and btnClose buttons are used to end the application. It calls the function
EPT_AH_CloseDeviceBylIndex() to remove the device from the Active Host dll. The
buttons btnOpen and btnClose have their Enabled parameter set to true and false
respectively. The Enabled parameter controls whether the button is allowed to launch an
event or not. If it is not enabled, the button is grayed out. At the end of each click event,
the Application.Exit() method is called. This exits the form.

Page

79

http://www.homeandlearn.co.uk/csharp/csharp.html

- EARTHPEOPLE

TECHNOLOGY

Analog Monitor Project User Manual

private woid btnOk Click({ocbject sender, Eventirgs e)

{
EPT_AH CloseleviceByIndex{device_index);
btnOpenDevice.Enabled = true;
btnCloseDevice.Enabled = false;
1blDeviceConnected.Text = "";
Application.Exit();

}

private woid btnCancel Click({object sender, Eventirgs e)

{
EPT_AH _CloseDeviceByIndex(device_index);
btnOpenDevice.Enabled = true;
btnCloseDevice.Enabled = false;
1blDeviceConnected. Text = "";
Application.Exit();

}

The btnStart and btnStop buttons are used to start and stop the EPT-570-AP USB

Trasnfer. They call the function EPT_AH_SendTransferControlByte() to set the bit 0 in

the control register. The function passes the control byte to the Active Host dll. They

both operate on the click event, which are setup in the Form1.Designer.cs file
this.btnStart.Click += new System.EventHandler (this.btnStart Click);
this.btnStop.Click 4= new System.EventHandler(this.btnStop Click);

The EPT_AH_SendTransferControlByte() requires two parameters, address and control

register. The address must correspond to the correct EndTerm in the EPT-570-AP code.

private void btnStart_Click(ebject sender, Eventirgs e)

EPT_AH_SendTransferControlByte((char}2, (char)l};
h

private void btnStop_Click(object sender, EventhArgs e}

{

}
The button SetScaleFactor will call the ScaleFactorMenuOpenWindow(). This code is
explained later. It will set up textboxes, buttons, and labels at runtime for use in
retreiving the scale factors for each analog channel.

private void btnSetScaleFactor_Click(object sender, EventArgs e)

{

}

The buttons RstMonitorX (X =1 to 6) are used to call the textbox clear method. When
this is envoked the text in the textbox will be cleared.

EPT_AH_SendTransferControlByte((char)2, (char)@);

ScaleFactorMenuOpeniindow();

private void btnRstMonitor6_Click{cbject sender, EventiArgs e)

{
}

tbMonitore.Clear();

Page

80

EARTHHPEOIPLE

TECHNOLOGY

Analog Monitor Project User Manual

5.1.9 C# Project EPTReadFunction Callback
When EPTReadFunction() callback is called and passed parameters from the Active

Ci#t WINDOW FUNCTIONALITY

Initialize Variables, Controls, Events, Read Callback
Function

{ USB TRANSFER Select EPT-570-AP Device

Open EPT-570-AP Device
Send Start Control to EPT-570-AP Device

OWait for Read Callback Event

ADDRESS SELECTION

BYTE SELECTION

READ UPPER BYTE FROM TRANSFER ENDTERM
READ LOWER BYTE FROM TRANSFER ENDTERM

UPDATE TEXTBOX WITH 10 BIT ADC VALUE

Host dll, it populates the EPTReceiveData object. It then calls EPTParseReceive()
function. This function uses a case statement to call the TransferOutReceive() function.
private woid EPTParseReceive()

{
switch (EPTReceiveData.Command)
{
case TRANSFER_OUT _COMMAND:
TransferOutReceive();
break;
default:
break;
¥
¥

TransferOutReceive() is the function that decodes the message, selects the EndTerm
address, reads and stores the upper byte, reads and stores the lower byte, and updates
the textboxes with the digitized values from the Arduino analog conversion. When a
transfer message has been received from the EPT-570-AP, the TransferOutReceive()
function uses the EPTReceiveData object address to conditionally branch to a set of

statements. This is done using a switch/case statement.

Page

81

EARTHHPEOIPLE

TECHNOLOGY

Analog Monitor Project User Manual

public woid TransferOutReceive()

1

/{5tore the address history from the EPT Receive Object
SecondPrevicusActualaddr = FirstPreviousActualiddr;
FirstPreviousActualAddr = EPTReceiveData.Address;

/{/Main Conditional Branch for populating the Textboxes
switch (EPTReceiveData.Address)

1

case TRANSFER OUT ADDRESS 1:
/4 Send the one character buffer.
if (DisplayAddress_1 & FirstDisplayByte)
{
The switch will select one of the case statements based on the following collection of
address’s:
e TRANSFER_OUT_ADDRESS 1
TRANSFER_OUT_ADDRESS_2
TRANSFER_OUT_ADDRESS 3
TRANSFER_OUT_ADDRESS 4
TRANSFER_OUT_ADDRESS 5
TRANSFER_OUT_ADDRESS 6

C# WINDOW FUNCTIONALITY

Initialize Variables, Controls, Events, Read Callback
Function

{ USB TRANSFER Select EPT-570-AP Device

Open EPT-570-AP Device

Send Start Control to EPT-570-AP Device

me for Read Callback Event —l

ADDRESS SELECTION

BYTE SELECTION

READ UPPER BYTE FROM TRANSFER ENDTERM
READ LOWER BYTE FROM TRAMNSFER ENDTERM
UPDATE TEXTBOX WITH 10 BIT ADC VALUE

When the code enters the TRANSFER_OUT_ADDRESS x case statement for the first
time, the DisplayAddress_x should be set to the same address as
EPTReceiveData.Address. The FirstDisplayByte should be high. This will cause the
first if statement to be entered.

Page

82

- EARTHPEOPLE

TECHNOLOGY

Analog Monitor Project User Manual

C#t WINDOW FUNCTIONALITY

Initialize Variables, Controls, Events, Read Callback
Function

{ USBTRANSFER Select EPT-570-AP Device

Open EPT-570-AP Device

Send Start Control to EPT-570-AP Device

OWaithr Read Callback Event —l

ADDRESS SELECTION
BYTE SELECTION

READ UPPER BYTE FROM TRANSFER ENDTERM

READ LOWER BYTE FROM TRANSFER ENDTERM

UPDATE TEXTBOX WITH 10 BIT ADC VALUE

case TRANSFER_OUT_ADDRESS 1:
// Send the one character buffer.
if (DisplayAddress_1 & FirstDisplayByte)

{

AnalogValue = 8;
FirstDisplayByte = false;
Analogvalue = Analogvalue | ((int)EPTReceiveData.cBlockBuf[@] << 8);

h
When it is entered, three things happen:

1. the AnalogValue is cleared to zero. This is done to clear out any value that was
previously in there.

2. The FirstDisplayByte is set to false so that the next time the case statement
TRANSFER_OUT_ADDRESS x is entered, the lower byte will be added to the
first 8 bits of AnalogValue.

3. The byte buffer EPTReceiveData.cBlockBuf[0] is right shifted by eight bits. It is
then added to AnalogValue. This will store the upper byte from the EPT-570-AP
to the upper 8 bits of AnalogValue.

C# WINDOW FUNCTIONALITY

Initialize Variables, Cantrols, Events, Read Callback
Function

{ USB TRANSFER Select EPT-570-AP Device

Open EPT-570-AP Device
Send Start Control to EPT-570-AP Device

OWait for Read Callback Event

ADDRESS SELECTION

BYTE SELECTION

READ UPPER BYTE FROM TRANSFER ENDTERM
READ LOWER BYTE FROM TRANSFER ENDTERM

UPDATE TEXTBOX WITH 10 BIT ADC VALUE

When the third statement in the if statement has completed, the case statement is exited
and the thread is ended.

The next time the ReadCallback is called, the switch conditional is entered again.

Page

83

EARTHHPEOIPLE

TECHNOLOGY

Analog Monitor Project User Manual

C# WINDOW FUNCTIONALITY

Initialize Variables, Controls, Events, Read Callback

Function

{ USB TRANSFER Select EPT-570-AP Device

Open EPT-570-AP Device

Send Start Control to EPT-570-AP Device

OWa'rt for Read Callback Event _l

ADDRESS SELECTION
BYTE SELECTION

READ UPPER BYTE FROM TRANSFER ENDTERM
READ LOWER BYTE FROM TRAMSFER ENDTERM

UPDATE TEXTBOX WITH 10 BIT ADC VALUE

This time the EPTReceiveData.Address will again be equal to
TRANSFER_OUT_ADDRESS x and FirstDisplayByte will be low. So, again the first

case statement will be entered.

CH# WINDOW FUNCTIONALITY

Initialize Variables, Controls, Events, Read Callback
Function

{ USB TRANSFER Select EPT-570-AP Device

Open EPT-570-AP Device

Send Start Control to EPT-570-AP Device

me for Read Callback Event —l

‘ADDRESS SELECTION

BYTE SELECTION

READ UPPER BYTE FROM TRANSFER ENDTERM
READ LOWER BYTE FROM TRAMNSFER ENDTERM

URDATE TEXTBOX WITH 10 BIT ADC VALUE

The second if conditional branch will be entered.

CH# WINDOW FUNCTIONALITY

Initialize Variables, Controls, Events, Read Callback
Function

{ USB TRANSFER Select EPT-570-AP Device

Open EPT-570-AP Device

Send Start Control to EPT-570-AP Device

OWait for Read Callback Event —l

ADDRESS SELECTION
BYTE SELECTION

READ UPPER BYTE FROM TRANSFER ENDTERM
READ LOWER BYTE FROM TRANSFER ENDTERM

UPDATE TEXTBOX WITH 10 BIT ADC VALUE

Page

84

A EARTIHPEOPLE

JTECHNOLOGY

Analog Monitor Project User Manual

else if (DisplayAddress_1 & !FirstDisplayByte)

{

string WriteRcwChar = "";
FirstDisplayByte = true;

Analogvalue = AnalogValue | ((int)EPTReceiveData.cBlockBuf[8]);

if (ScaleFactorl != 8.8)

i
FloatValue = AnalogValue * ScaleFactorl;
WriteRcvChar = String.Format("{2}", FleoatValue);
h
else

WriteRcwChar = String.Format("{2}", AnalogValue);

When it is entered, the following occurs:

1. The WriteRcvChar is cleared to zero. This is done to clear out any value that
was previously in there. This variable is used to collect the modified
AnalogValue and send it a thread to be written to the Textbox.

2. The FirstDisplayByte is set to true so that the next time the case statement
TRANSFER_OUT_ADDRESS x is entered, the upper byte will be added to the
first 8 bits of AnalogValue.

3. The byte buffer EPTReceiveData.cBlockBuf[0] is added to AnalogValue. This
will store the lower byte from the EPT-570-AP to the lower 8 bits of
AnalogValue.

4. The ScaleFactorx variable is checked for nonzero value. If is zero, the
AnalogValue is converted to a string and stored in WriteRcvChar. This will pass
the raw counts from the output of the Arduino ADC channel into WriteRcvChar.
If the ScaleFactorx is nonzero, that tells the code that a scale factor is present
and the code must multiply this value by the raw counts from the Arduino ADC
channel. This is done by using a float value labeled: FloatValue. This value is
set to the result of AnalogValue multiplied by the ScaleFactorx.

5. The results of the scalefactor conditional branch is converted to a string then
stored in WriteRcvChar.

C# WINDOW FUNCTIONALITY

Initialize Variables, Controls, Events, Read Callback
Function

{ USB TRANSFER Select EPT-570-AP Device

Open EPT-570-AP Device
Send Start Control to EPT-570-AP Device

OWait for Read Callback Event

ADDRESS SELECTION

BYTE SELECTION

READ LPPER BYTE FROM TRANSFER ENDTERM
READ LOWER BYTE FROM TRANSFER ENDTERM

UPDATE TEXTBOX WITH 10 BIT ADC VALUE

Page

85

PEOIPLE

OLOGY

Analog Monitor Project User Manual

DisplayAddress_1 = false;
DisplayAddress_2 = true;

DisplayAddress_3 = false;
DisplayAddress_4 = false;
DisplayAddress_5 = false;
DisplayAddress_B& = false;

Thread DisplaylThread = new Thread(new ParameterizedThreadStart({DisplayValuel));
DisplaylThread.Start (WriteRcvChar);
h

6. The next several statements update the DisplayAddress_x variables. It sets the
current DisplayAddress_x to false and sets the next incremented
DisplayAddress_x to true. This is done so that the C# code can be synchronized
with the code on the Arduino.

7. Next, the WriteRcvChar value is sent to the thread that will populate the
textbox. Calling a thread is similar to calling a function. However, when you call
a function in the traditional C language, the calling instruction is halted while
the function instructions are executed. When the function is complete, the
execution is handed back to the calling instruction and it continues to execute
and the next instruction after that is executed and so on. When a thread is
commanded to execute, the Windows OS will execute instructions for the
function in the thread and simultaneously continue execution of instructions in
the calling code. The Windows OS allows hundreds of threads to execute
simultaneously. It maintains the memory and execution requirements for each
thread transparently to the user. C# is brilliant because you can easily call a
thread and forget about it. It handles everything for you, it even cleans up the
memory after the thread has completed. So, to launch our “write to textbox”
thread, use the ParameterizedThreadStart() function. This allows us to pass an
object, “WriteRcvChar” to the function.

public woid DisplayValuel({ocbject WriteRcwvChar)

1
b

this.Invoke(new MethodInvoker(delegate() { tbMonitorl.Text = (string)WriteRcwvChar; }));

8. Finally, the textbox, “tbMonitor_x" is updated. This is done by using the
Invoke-Method instruction. A method is a function in a class. In winforms,
Invoke is used to call a method on the Ul thread — without it can cause an
exception by updating the Ul from another thread. Effectively, what Invoke does
is ensure that the code you are calling occures on the thread that the control
“lives on” effectively preventing cross threaded exceptions. Further, the .NET
framework creates multiple threads when using winforms. The textboxes “live”
on a controls thread, while your code to update the textbox “lives” on a user-
background thread. These two threads are not synchronized. So, your code must
ask the textbox thread (called the Ul thread) politely if it could update the text

Page

86

EARTHHPEOIPLE

TECHNOLOGY

Analog Monitor Project User Manual

characters in the box. The Ul thread will decide when it is ready to stop and
handle the request from the background thread.
Once the Invoke—Method has been called the EPT TransferOut thread is complete and
the textbox will be updated with the 10 bit digitized sample from the Arduino selected
channel.

Then repeat the above steps for the rest of the five channels.

Page

87

EARTHHPEOIPLE

TECHNOLOGY

Analog Monitor Project User Manual

case TRANSFER_OUT_ADDRESS 1:
/4 Send the one character buffer.
if (DisplayAddress_1 & FirstDisplayByte)
{
Analogvalue = 8;
FirstDisplayByte = false;
Analogvalue = AnalogValue | ((int)EPTReceiveData.cBlockBuf[8] << 8);

}
clse if (DisplayAddress_L & !FirstDisplayByte)
{

string WriteRcvChar = "3
FirstDisplayByte = true;

AnalogValue = AnalogValue | ((int)EPTReceiveData.cBlockBuf[8]);

if (ScaleFactorl |- @.8)

FloatValue = AnalogValue * ScaleFactorl; B] << 8);
WriteRcvChar = String.Format("{e}", Floatvalue);

else
WriteRcvChar g.Format("{e}", Analogvalue);

DisplayAddress_1 = false;

Displayaddress 2 = true; b1y
DisplayAddress_3 = false; i
Displayaddress_4 = false;
Displayaddress s = false;
DisplayAddress 6 = false;

Thread DisplaylThread = new Thread(new ParameterizedThreadstart(DisplayValuel))

DisplaylThread.Start(WriteRcvChar);
2 T : uf[e] << 8);

WriteRcvChar = String.Format("{@}", AnalogValue);

Displayaddress_1 = false;
Displayaddress_2 = false;
DisplayAddress_3 = true;
DisplayAddress_4 = false;
DisplayAddress_5 = false; uf[e]);

DisplayAddress_6 = false;
Thread Display2Thread = new Thread(new ParameterizedThreadstart(DisplayValue2));
Display2Thread.Start(WriteRevChar);
WriteRcvChar = String.Format("{8}", FloatValue);
B
else)
WriteRcvChar = String.Format("{8}", Analogvalue);
DisplayAddress_1 = false;
DisplayAddress_2 = false;
DisplayAddress_3 = false;
DisplayAddress_4 = true;
DisplayAddress_5 = false;
DisplayAddress 6 = false;
Thread Display3Thread = new Thread(new ParameterizedThreadStart(DisplayValue3)); ufle] << 8);
Display3Thread.Start(WriteReyChar);
else
WriteRevChar = String.Format("{0)", Analogvalue);
DisplayAddress_1 = false;
DisplayAddress_2 = false;
DisplayAddress_3 = false; uf[e]);
DisplayAddress_4 = false;
DisplayAddress_5 = false;
DisplayAddress_6 = true;
Thread DisplaySThread = new Thread(new ParameterizedThreadstart(DisplayValues))s
DisplaySThread.Start(WriteRevChar);

7
else
WriteRcvChar =

ng-Format(*{a}", AnalogValue);

DisplayAddress_1 = false;
DisplayAddress_2 = false;
DisplayAddress_3 = false;
DisplayAddress_4 = false;
DisplayAddress_5 = true;
DisplayAddress_6 = false;

Thread DisplayaThread = new Thread(new ParameterizedThreadstart(DisplayValued));
Display4Thread.Start(WriteRcvChar);
i£ (seal —a

{

FloatValue = AnalogValue = ScaleFactors;
WriteRevChar = String.Format("{8}", FloatValue);

}

else

WriteRcvChar = String.Format("{8}", AnalogValue);

DisplayAddress 1 = true;

DisplayAddress_2 = false;
DisplayAddress_3 = false;
DisplayAddress_4 = false;
Displayaddress_5 = false;

DisplayAddress 6 = false;

Thread Display6Thread = new Thread(new ParameterizedThreadstart(Displayvalues))s
Display6Thread.Start(WriteRevChar);

Page

88

- EARTHPEOPLE

TECHNOLOGY

Analog Monitor Project User Manual

Now that we have the code to perform the decode, store the digitized value and display
to textbox, we need to add error correction code. This code is added to handle the case

in which we start up the Analog Monitor C# code and we don’t know what channel or

which byte (upper/lower) is being received.

We add two conditional branches to the case statement of
TRANSFER_OUT_ADDRESS_x. These two branches will handle the case when
DisplayAddress_x is low. This means that for the EPTReceiveData.Address received,
the DisplayAddress_>r< was not set to the correct address previously.

else if (!DisplayAddress_1 & FirstDisplayByte)

{
FirstPreviousCalcAddr = EPTReceiveData.Address;
FirstDisplayByte = false;
AnalogValue = @;

DisplayAddress_1 = true;
DisplayAddress_2 = false;
DisplayAddress_3 = false;
DisplayAddress_4 = false;
DisplayAddress 5 = false;
DisplayAddress_6 = false;

else if (!DisplayAddress_1 & !FirstDisplayByte)

i
SecondPreviousCalcAddr = EPTReceiveData.Afddress + 1;
FirstDisplayByte = true;
AnalogValue = @;
if ((FirstPrevicusActualAddr == FirstPrevicusCalcAddr) &
(SecondPreviousActualAddr != SecondPrevicusCalcAddr))
{
DisplayAddress_1 = false;
DisplayAddress_2 = true;
DisplayAddress_3 = false;
DisplayAddress_4 = false;
DisplayAddress 5 = false;
DisplayAddress_6 = false;
¥
else
{
DisplayAddress_1 = true;
DisplayAddress_2 = false;
DisplayAddress_3 = false;
DisplayAddress_4 = false;
DisplayAddress_5 = false;
DisplayAddress 6 = false;
}
¥

We will need several variables to accomplish error correction. These variables are:

Page

89

A EARTIHPEOPLE
5 T E C N

H OLOGY

Analog Monitor Project User Manual

Pfﬁdd’ess variables to keep track of which Transfer
//group should store the Display byte from the EPT-578@
public bool DisplayAddress_1 = false;

public bool DisplayAddress_2 = false;

public bool DisplayAddress_3
public bool DisplayAddress_4 = false;
public bool DisplayAddress_5 = false;
public bool DisplayAddress_6 = false;

false;

//Address variables to store history of the addresses
J/from the EPT Receiwve object

public int FirstPrevicusActualAddr = @;

public int SecondPreviousActualAddr = @;

//Address variables to store history of the addresses
/fdetermined by the case statements

public int FirstPrevicusCalcAddr = @;

public int SecondPrewviocusCalcAddr = @;

The DisplayAddress_x variables are used to check whether the Arduino channel
number and the C# code are in sync. The FirstPreviousActualAddr and
SecondPreviousActual Addr are used to record the previous two Arduino channel
selections. The FirstPreciousCalcAddr and SecondPreviousCalcAdddr are used to
record the address’s that the C# code calculates in response to
EPTReceiveData.Address and conditional branches.

In the first error correction branch, EPTReceiveData.Address will select a case
statement with TRANSFER_OUT_ADDRESS_x but the DisplayAddress_y is not the
same value. The FirsDisplayByte is high, so the following happens.

1.

grwn

Each time a byte is received, SecondPreviousActualAddr is set to
FirstPreviousActualAddr. Also, FirstPreviousActual Addr is set to
EPTReceiveData.Address. This ensures that the older address is in the Second...
and the newest address is in First...

Set FirstPreviousCalcAddr to EPTReceiveData. Address.

Set FirstDisplayByte to false or low.

Set AnalogValue to zero

Set DisplayAddress_x to high. This will select the current address of
EPTReceiveData.Address. This assumes that the current selection of
EPTReceiveData.Address is the upper byte of the digitized value and the
following selection of EPTReceiveData.Address will be the lower byte. If that is
the case then we will be in sync with the Arduino channel selection and no
further error correction will be needed.

In the second error correction branch, EPTReceiveData.Address will select a case
statement with TRANSFER_OUT_ADDRESS_x but the DisplayAddress_y is not the
same value. The FirsDisplayByte is low, so the following happens.

1.

Set SecondPreviousCalcAddr equal to the incremetn of
EPTReceiveData.Address. This makes the assumption that the next byte
transferred will be the upper byte of the digitized value and that means that the
address will be incremented.

Page

90

PEOIPLE

OLOGY

2. FirstDisplayByte is set to true.

3. AnalogValue is set to zero.

4. A conditional branch is used to check if the FirstPreviousActual Addr is equal to
FirstPreviousCalcAddr. Also SecondPreviousActual Addr is checked for
equivalency with SecondPreviousCalcAddr. This is done to check the history of
the address’s that have been used to get to this conditional branch. If the history
is congruent, then the DisplayAddress_x will be set to the next address. If the
history is not congruent, DisplayAddress_x will be set to the current address.

This is all that is necessary to synchronize the Arudino channel selection and the C#
display functions. Use the table below to verify that the error correction code will
synchronize with the Arduino channel no matter what the channel is or whether the C#
code is receiving the upper digitized byte or lower digitized bye.

Analog Monitor Project User Manual

Arduino Channel

EPTReceiveData.Address|

Upper ADC Byte|

Lower ADC Byte

Address Calculated

FirstDisplayByte

FirstPreviousActualAddr

SecondPrevicusActualAddr

FirstPreviousCalcAddr

SecondPreviousCalcAddr

Case 1: Arduino
Channel is 1,
Sending Upper
Byte

1

0

=

1

=]

0

0

1
1
1
1
2
2
2
2
3
3
3
3

olo|lr|rlola|w|—|o|lolk]-]|-

mlrlololk|kr|lalal-|-|la|la

oo e o e fpa | ra | ra o e | o

HEEIEEEEIEEEEE

wo fus feo e ra | rafra fra e e e e |

wilw|rar|rfrf=em=|= oo

R U U P U PG PR PR U) P 2%

oloojojoo|lolalala|la|o

Case 2: Arduino
Channel is 1,
Sending the
Lower Byte

1
1
2
2
2
2
3
3
3
3

SRE=1 N N E=R E=E N e (= (=1

mlrlalal|-|la|la|~]|~

o | o fw|w e e e |- e

rlola|lkrlaola|la|la|-

[0 X0 [ER [T) XY FXR FR3 oy I

e frfr = o|o

[HE) PR PR PR UG R R PR g P

ww|w|wfwfw|w|o|o|o

5.1.10

belongs to.

C# Project Scale Factor Selection

When both the upper and lower bytes have been received from the EPT-570-AP, the
AnalogValue has the ADC counts from the Arduino channel. But this is just a digital
representation of the analog signal sampled at the ADC input. To convert this into a real
voltage, we have to multiply the raw counts by the scale factor. First we need to
calculate what the scale factor should be. This is accomplished by taking the full scale
deflection of the ADC, this means the maximum voltage the ADC can take, for the
Arduino Uno it is 5 Volts. Then divide this number by the total number of counts of the
ADC, for the Arduino Uno’s 10 bit ADC, this is 2'° = 1024. So, the scale factor is
5V/1024Counts. Our scale factor is 0.0048828 Volts/Counts. To set the scale factor for
each Arduino channel digitized value, we added all the code to file ScaleFactorMenu.cs.
The top of the file declares the namespace to add the code to, and the class that is

Page
91

EARTHHPEOIPLE

TECHNOLOGY

Analog Monitor Project User Manual

namespace EPT_Analog_Monitor

{

public partial class EPT_Analog_Monitor

{
This code is activated when the

] s [Soerocon

button is clicked. It calls the ScaleFactorMenuOpenWindow() function.

public void ScaleFactorMenuOpeniindow()

{

this.AutoSize = false;

The code will expand the WinForm and add textboxes, buttons, and labels at run time.
The code looks the same as if we used the ‘drag and drop” method from the Visual
Studio Toolbox.

//Textboxes to add

TextBox ScaleFactorlTextBox = nullj;
TextBox ScaleFactor2TextBox = nullj;
TextBox ScaleFactor3TextBox = null;
TextBox ScaleFactordTextBox = nullj;
TextBox ScaleFactor5TextBox = nullj;
TextBox ScaleFactor&TextBox = null;

//Buttons to add
Button ScaleFactorExitButton = null;

//Labels to add

Label ScaleFactorllLabel = null;
Label ScaleFactor2Label = null;
Label ScaleFactor3Label = null;
Label ScaleFactord4label = null;
Label ScaleFactorSLabel = null;
Label ScaleFactor6Label = null;
Label ScaleFactorStatus = null;

//Repeat and delay for Send
public float ScaleFactorl =
public fleoat ScaleFactor2
public float ScaleFactor3
public float ScaleFactord =
public fleoat ScaleFactors
public float ScaleFactors

Each textbox is setup with the following code.

1
// Scale Factor Menu Add TextBoxes
1

]
sesees T

//Textbox to Enter Path and Filename of File to Send

ScaleFactorlTextBox = new TextBox();

ScaleFactorlTextBox.Location = new System.Drawing.Point(42@, 1ea);
ScaleFactorlTextBox.5ize = new System.Drawing.5ize(5@, 2@);

ScaleFactorlTextBox.Font = new System.Drawing.Font("Microsoft Sans Serif™, 9.75F, Systen
ScaleFactorlTextBox.Visible = true;

ScaleFactorlTextBox.Text = "@8.8";

this.5caleFactorlTextBox.KeyPress += new System.Windows.Forms.KeyPressEventHandler(this.
this.Controls.Add({ScaleFactorlTextBox);

//Resize the window for both textboxes.

this.Size = new Size(6@@, 488);

Each button and label is setup with the following code.

Page

92

) EARTIHPEOPLE

TECHNOLOGY

Analog Monitor Project User Manual

// Scale Factor Menu Add Buttons

//Exit button to end SendMenu

ScaleFactorExitButton = new Button();

ScaleFactorExitButton.Llocation = new Point(54@, 1@);
ScaleFactorExitButton.FlatAppearance.BorderSize = 1;
ScaleFactorExitButton.Text = "Exit";

ScaleFactorExitButton.Size = new System.Drawing.Size(4@, 28);
//this.toolTipl.SetToolTip(this.ScaleFactorExitButton, “Exit");
this.Controls.Add(ScaleFactorExitButton);

ScaleFactorExitButton.Click += new EventHandler(ScaleFactorExitButton_Click);

// Scale Factor Menu Add Labels

//Add File to send Label to Send Textbox
ScaleFactorllabel = new Label();
ScaleFactorllabel.lLocation = new Point(4@@, 5@);
ScaleFactorllabel.Font = new Font("Arial"”, 8);
ScaleFactorllLabel.Text = "ScaleFactor 17;
this.Controls.Add(ScaleFactorllabel);

When all of the textboxes, buttons, and lables are set up, the

ScaleFactorMenuSetAnchor() function is called. This makes sure that all controls are
pinned to the top left corner of the Winform. If the user resizes the window, all of the
controls: textboxes, buttons, and labels will get resized along with the main Winform.

When the window is complete at runtime it will look like:

Set the Scale
ScaleFactor 1 ScaleFactor 2
0.0 0.0
ScaleFactor 3 ScaleFactor 4
0.0 0.0
ScaleFactor 5 ScaleFactor 6
0.0 0.0

To add a value to the ScaleFactor x textbox, just type in the number. The “KeyPress”
event will be raised by typing in the textbox. We add a subsctiption to this event. When
the event occurs, we execute our code to retreive the scale factor value.

private void ScaleFactorlTextBox KeyPress(object sender, Eventirgs e)

i
//Read the scale factor 1 from text box.
ScaleFactorl = (float)Convert.ToDouble(ScaleFactorlTextBox.Text);

}

For more information about events and how to subscribe to them, see this web page.
http://www.homeandlearn.co.uk/csharp/csharp s9pl.html

Page

93

http://www.homeandlearn.co.uk/csharp/csharp_s9p1.html

) EARTIHPEOPLE

TECHNOLOGY

Analog Monitor Project User Manual

When we execute our code, the ScaleFactorX is set equal to the string value of the
textbox, ScaleFactorXTextBox.Text. This means the number retrieved from the textbox
is in the wrong format, ie a string. So, we need to convert the string into a float value for

use as a scale factor. To do this, use the “Convert. ToDouble” method. Then recast the
double as a float, ScaleFactorX =

(float)Convert. ToDouble(ScaleFactorX TextBox.Text);

Repeat this KeyPress event for all six ScaleFactor textboxes.

private void ScalefactorlTextBox_KeyFress{object sender, Eventirgs e)
{
{fRead the scale factor 1 from text box.
ScaleFactorl = (float)Convert.TeDouble(ScaleFactorlTextBox. Text);
}
public veld ScaleFactor2TextBox_KeyPress{object sender, Eventirgs e)
f/nead the scale factor 2 from text box.
ScaleFactor2 = (float)Convert.ToDouble(ScalaFactor2TextBax. Text);
}
private veid ScaleFactor3TextBox_KeyPress(ebject sender, Eventirgs e)
{
//Read the scale factor 3 from text box.
ScaleFactor3 = (float)Convert,.TeDouble(ScaleFactor3TextBox. Text);
}
private vold ScaleFactordTextBox_KeyPress(object sender, ntArgs &)
{
/fRead the scale factor 4 from text box.
Scalefactord = (fleat)Convert,ToDouble(ScaleFactordTextBox.Text);
private void ScaleFactorSTextBox_KeyPress{object sender, entArgs e)
{
ffRead the scale factor 5 from text bex.
ScaleFacters = (float)Convert.ToDouble{ScaleFactorSTextBox.Text);
}
private void ScaleFactor6TextBox_KeyPress(cbject sender, Eventargs e)
{
//Read the scale factor 6 from text box.
ScaleFactoré = (float)lonvert.TeDouble(ScaleFactoréTextBox. Text);
}

Once the ScaleFactor is updated, it will be multiplied by the AnalogValue for the
appropriate channel on the next display textbox update for the given channel.
else if (DisplayAddress 1 & !FirstDisplayByte)
{
string WriteRcvChar = ""
FirstDisplayByte = true;

>

AnalogValue = AnalogWalue | ((int)EPTReceiveData.cBlockBuf[8]);

if (ScaleFactorl != @.8)

1
FloatValue = AnalogValue * ScaleFactorl;
WriteRcvwChar = String.Format("{2}", FloatValue);
}

else
WriteRcvChar = String.Format("{@}", AnalogValue);

Page

94

EARTHHPEOIPLE

TECHNOLOGY

Analog Monitor Project User Manual

The ScaleFactorExitButton_Click event calls the shutdown of the ScaleFactor Menu. It
disposes of textboxes, buttons, and labels and resets the Winform to its original
dimensions.

private void ScaleFactorExitButton_Click(ocbject sender, Eventirgs e)

i
//TextBox to Dispose
ScaleFactorlTextBox.Dispose();
ScaleFactor2TextBox.Dispose();
ScaleFactor4TextBox.Dispose();
ScaleFactorSTextBox.Dispose();
ScaleFactor6TextBox.Dispose();

//Buttons to Dispose
ScaleFactorExitButton.Dispose();

//Labels to Dispose
ScaleFactor3label.Dispose();
ScaleFactord4label.Dispose();
ScaleFactorllabel.Dispose();
ScaleFactor5SLabel.Dispose();
ScaleFactor2label.Dispose();
ScaleFactorelabel.Dispose();
ScaleFactorStatus.Dispose();

//size the Window to its original size
this.Size = new System.Drawing.Size(40@, 488);
//Anchor the textbox to the Windows Form
this.Anchor = (&nchorStyles.Top | AnchorStyles.Bottom | AnchorStyles.Left);

}

5.1.11 C# Project Completion

This is all that is needed for the Analog Monitor project. The Arduino will generate a 10
bit digitized word for each channel. It then transmits that word to the CPLD using the
Write_Enable, Address and data pins. The CPLD transmits each 10 bit word to the PC
using the Active_Transfer EndTerm, Active_Transfer Library, and One Hot State
Machine. The dll reads the 10 bit word into local memory. It then calls the Callback
function, EPTReadFunction. Each 10 bit value is finally displayed to screen using the
TransferOutReceive() function.

5.2 PC: Compiling the Active Host Application

Building the Analog_Monitor project will compile the code in the project and produce
an executable file. It will link all of the functions declared in the opening of the
Analog_Monitor Class with the Active Host dll. The project will also automatically link
the FTD2XX.dll to the object code.

To build the project, go to Debug->Build Solution.

Page

95

EARTHHPEOIPLE

TECHNOLOGY

Analog Monitor Project User Manual

14| EPT_Analog_Monitor - Microsaft Visual C# 2010 Express (S
File Edit View Refactor Project Build | Debug Data Tools Window Help
i G i w 5 o @l | % a0 6 Build Solution F6 54 ~ | (% [btnTransferReset -] | R = Sk B G L
ERERA A) Iz ‘ & =49 Rebuild Sclution
& .
fi¥ Solution Explorer > 1 X “ Publish EPT Analog Monitor Forml.cs X
=] = Confi ition M.
E = ‘ &) El EE enfigurahien Manager J ~| “% TransferOutReceive() - |
il -4 Solution 'EPT_Analog_Manito Slusing System; B ‘ |
i 4 (5 EPT_Analog Monitor using System.Collections.Generic; b
B . [l Properties using System.ComponentModel; =)
] , B References using System.Data;
& 5] active transfer x6d.cs using System.Draning;
A — - - using System.Lling;
:j‘ 4 EFormlcs . using System.Text;
2 '#] Forml.Designer.cs using System.Windows.Forms;
2 ‘2] Forml.resx using System.Threading;
#] Program.cs using System.Runtime.InteropServices;
=] ScaleFactorMenu.cs using System.Diagnostics;
~Inamespace EPT_Analog_Monitor
public partial class EPT_Analog Moniter : Forn
public EPT_analog Monitor()
InitializeComponent();
for (int i = B; i < EPTTransmitDevice.length; ++i)
EPTTransmitDevice[i] = new Transfer();
}
o . » !
l—‘z‘ Solution Exp... L ROEEAL 100 % ~ ¢ | m
Error List > 1 x
@ 0Erors | f\0Wamings | (i) 0 Messages
Description Fle Line Column Project
Ready Ln162 Col 26 Ch 26 INS

The C# Express compiler will start the building process. If there are no errors with code
syntax, function usage, or linking, then the environment responds with “Build
Succeeded”.

Find Results

S ENEAT

F_.‘._; Error List -ﬂ Find Results

Build succeeded
If the build fails, you will have to examine each error in the “Error List” and fix it
accordingly. If you cannot fix the error using troubleshooting methods, post a topic in
the Earth People Technology Forum. All topics will be answered by a member of the
technical staff as soon as possible.

5.2.1 Adding the DLL's to the Project

Locate the UNO_ANALOG_MONITOR_PROJECT_CD installed on your PC. Browse
to the Projects_ActiveHost folder (choose either the 32 bit or 64 bit version, depending
on whether your OS is 32 or 64 bit). Open the Bin folder, copy the following files:

e ActiveHostXX.dll

o ftd2xxXX.dll

and paste them in the EPT_Analog_Monitor\EPT_Analog_Monitor\bin\x64\Release
folder of your EPT_Analog_Monitor project.

Page

96

\ EARTIHPEOPLE

TECHNOLOGY

Analog Monitor Project User Manual

< Visual Studio 2010 » Projects » EPT Analog_Monitor » EPT Analog Monitor & bin » x54 » Release

lngamza' [Openwith.. E-mail Bum Newfolder #- 0 @

EPT_Analog_Menitor
EPT_Analog_Monitor
bin
Debug ™
Release % ActiveHosts4.dIl S5/4/2013%:51PM Application exten
354 [=7 EPT_Analog_Monitor.exe 5/26/2013%:10 PM Appli
Release @] EPT_Analog_Monitor.pdb 5/26/2013%10PM Progs

* Documents library

Armange by: Folder ¥
Release

Name . Date modified Type Size

35K
28K
54K

obj 57 EPT_Analog_Monitor.vshost.exe 6/1/2013818PM Application 12K
Properties] EPT_Analog Monitor.vshost.exemanifest 8/31/2008 12:40 AM MANIFEST File 1Kl
EPT Transfer_Test %] ftd2io64.dll 1/18/20133:54 PM Application extens... 252K
EPT_Transfer_Test

-

4 2 items selected State: B Shared Size: 286 KB Shared with: Homegroup
i Date modified: 1/18/2013 3:54 PM - 5/4... Date createc: 5/26/2013 4:58 PM

At this point, the environment has produced an executable file and is ready for testing.
Next, we will connect everything together and see it collect data and display it.

6 Connecting the Project Together

Now we will connect the Arduino, EPT 570-AP-U2, and the PC to make an Analog
Monitor. First, connect a USB cable from a USB port on the PC to the Arduino. Second,

Next, let’s connect the Six 5VDC Power Supplies to the analog inputs of the Arduino.
We will do the by using the following parts:
6 Pin 2.54 mm Male Header

10 Pin 2.54 mm Male Header
Six 5VDC Power Supplies
Five Black Banana Lead jumpers to connect the Power Supplies together
One Black Banana Clip Lead to connect the Power Supplies to the Arduino

e Six Red Banana Clip Leads to connect the Power Supplies to the Arduino
Connect the 10 Pin 2.54 mm Male Header into the J12 connector of the EPT-570-AP
board. Next, connect the 6 Pin 2.54 mm Male Header into the J9 connector of the EPT-
570-AP board. Connect the black banana jumpers between the grounds of all the
supplies. Connect the black banana clip lead to one of the power supply grounds and
Pin 7 of J12. Connect one red banana clip lead to each of the power supply positive
outputs and connect to one of the pins on the J9 connector.

Page

97

EARTHHPEOIPLE

TECHNOLOGY

Analog Monitor Project User Manual

Next, open the Arduino IDE and select File->Open and select your sketch created
earlier, Arduino_Analog_Monitor_Code_U2.ino.

Lookin: | Arduns_Analog_Mortor_Cade_U2 - 02 &

Mame 2 Date modified Type

~» [Aduino_Ansiog Moniter_Code UZino 4/28/201311:17 PM__INO Fe
Recent Places

Desktop

Fle name: Ardure_naiog Menter_Code U2 ro
Fles of type Al Fles ©)

Page

98

EARTHHPEOIPLE

TECHNOLOGY

Analog Monitor Project User Manual

Select the file and click Open. The sketch will now populate the Arduino IDE window.
Compile and Download the sketch into the Arduino microcontroller using the Upload
button.

&% Arduino_Analog_Monitor_Code_U2 | Arduino 1.0.1 C=RAaa >
File Edit Sketch Tools Help

Arduino_Analog_Monitor_Code_ L2 &

AT -

Copyright Earth People Technology Inc. 2013

Analog Monitor (]

Platform: EPT-570-AP-TI2

=

int AdcWalue;
int UpperddcoValue;

void setupi()

1
DDED = B11111111; //3et Port D as outputs
PORTD &= BL1111111; //Turn on Port D pins

DDRE = BOOL11111; //8et Port B as outputs
PORTE &= BOOOOOOOO: //Turn on Fort B pins

4 Arduing 46

The Arduino IDE will compile the project, then transmit the machine level code into the
ATMega328 SRAM to start the program.

The CPLD should already be programmed with its Analog Monitor Project.
Open the EPT Analog Monitor on the PC by browsing to the Analog Monitor project
folder. Locate the executable in the \bin\x64\Release folder.

=B X
. % Visual Studio 2010 » Projects » EPT_Analog_Monitor » EPT_Analog_Monitor » bin » x4 » Release w | %3 [l Search Release pel
Organize » Open E-mail Burn New folder ==~ 0 @
| EPT_Analog_Monit 5
-Analog_Monitor Documents library i e ELOTO
. EPT_Analog_Menitor Release Arangety: = hoicer
! bin .
| Debug [Meme Date modified Type Size
! Release %) ActiveHost4.dll 5/4/2013 9:51 PM Application extens... 35Kl
| xbd “E] EPT_Analog_Monitor.exe 5/26,/2013 9:10 PM Application 28 KE
. Release & EPT_Analog_Menitor.pdb 5/26/2012 9:10 PM Program Debug D... 54 Kl
. obj = EPT_Analog_Monitor.vshost.exe 6/10/2013 212 PM Application 12Kl
/ Properties (%) EPT_Analog_Monitor.vshost.exe.manifest 8/31/200912:40 AM MANIFEST File 1Kl
1 EPT_Transfer_Test %) frd2xedsd.dll 1/18/2013 3:54 PM Application extens... 252K
. EPT Transfer_Test
: -« m | r
| EPT_Analog_Maonitor.exe State: 3 Shared Size: 28.0 KB Shared with: Homegroup
. Application Date modified: 5/26/2013 9:10 PM Date created: 5/23/201312:11 AM

Page

99

y EAIRTIHIPEOIPLE

TECHNOLOGY

Analog Monitor Project User Manual

Initiate the application by double clicking the application icon in the \Release folder of
the project. The application will open and automatically load the Active Host dll. The
application will locate the EPT 570-AP-U2 device. Next, the combo box at the top will
be populated with the name of the device.

| v -sm -St
EPT USB <-> Serial&JTAG Cable B =
Monitor 1 Monitor 2 Monitor 3
Monitor 4 Monitor 5 Monitor 6
[ok | [GCose | set[Scale Factors |

Select the EPT 570-AP device and click the Open button. If the Active Host application
connects to the device, a label will indicate “Device Connected”.

EPT USB <-> Serial&JTAG Cable B +
Op Device Connected
Monitor 1 Monitor 2 Monitor 3
Monitor 4 Monitor 5 Monitor 6
[OK] [Close] Set [Scale Factors]

6.1 Testing the Project

To test our Analog Monitor project, just click on the Start button. As soon as the device
connects, the data from the Arduino will appear in the received data textBox.

Page

100

\ EARTIHPEOPLE
" TECHNOLOGY

Analog Monitor Project User Manual

EPT USB <> SeialéJTAG Cable B +
: Op en. :a Device Connected

Monitor 1 Monitor 2 Monitor 3
242 240 240

Monitor 4 Monitor 5 Monitor 6
238 238 239

[ok | [Close | Set| Scale Factors |

cale Factors” button.
- = sl

= X

Turn on all six of the 5VDC Power Supplies. Click on the “Set S

EPT USB <-> SerialdJTAG Cable B v
((open] Device Connected Set the Scale
Monitor 1 Monitor 2 Monitor 3 Scakile? Sca,k:"?dirz
= i - 0.0 0.0
243 239 240
ScaleFactor 3 ScaleFactor 4
0w 00
ScaleFactor 5 ScaleFactor 6
Monitor 4 Monitor 5 Monitor 6 0.0 0.0
240 239 243
(Rt]
[ok | [Clse | Set[Scale Factors |

Type the scale factor for each Monitor textbox in the corresponding ScaleFactor
textbox. The scale factor is 5V/1024Counts. Our scale factor is 0.0048828
Volts/Counts.

Page

101

EARTHHPEOIPLE

TECHNOLOGY

Analog Monitor Project User Manual

Analeg Monitor

EPT USB <> SealdJTAG Cablz B ~
Device Connected
Maonitor 1 Monitor 2 Monitor 3
56 539 272
Menitor 4 Monitar & Monitor &
267 267 6.74
o

And that’s all there is to the Analog Monitor Project. It’s up to the user to use this
project as a base to create much larger projects. You can easily make a volt meter using
this project by turning off the Random number generator in the Arduino and reading the

Analog Pins. Also, reformat the textBox display that it shows in decimal instead of the
Hexadecimal display.

Page

102

