
USB CPLD Development System User Manual

Page 1

EARTH PEOPLE TECHNOLOGY, Inc

USB-CPLD DEVELOPMENT SYSTEM FOR THE ARDUINO

UNO
User Manual

The EPT USB-CPLD development system provides an innovative method of

developing and debugging programmable logic code. It also provides a high speed data

transfer mechanism between an Arduino board and a host PC. The EPT USB-CPLD

development system provides a convenient, user-friendly work flow by connecting

seamlessly with Altera’s Quartus II software. The user will develop the code in the

Quartus environment on a Windows Personal Computer. The programmable logic code

is loaded into the CPLD using only the Quartus Programmer tool and a standard USB

cable. The Active Host SDK provides a highly configurable communications interface

between Arduino and host. It connects transparently with the Active Transfer Library in

the CPLD code. This Active Host/Active Transfer combination eliminates the

complexity of designing a USB communication system. No scheduling USB transfers,

USB driver interface or inf file changes are needed. The EPT USB-CPLD development

system is a unique combination of hardware and software.

Circuit designs, software and documentation are copyright © 2012, Earth People

Technology, Inc

Microsoft and Windows are both registered trademarks of Microsoft Corporation.

Altera is a trademark of the Altera Corporation. All other trademarks referenced herein

are the property of their respective owners and no trademark rights to the same are

claimed.

http://www.earthpeopletechnology.com/

http://www.earthpeopletechnology.com/

USB CPLD Development System User Manual

Page 2

Table of Contents
1 Introduction and General Description ... 4

1.1 Test Driving the Active Host Test Application .. 5
1.2 EPT-570-AP ... 8

1.2.1 High Speed USB Communications ... 10
1.2.2 Inputs and Outputs .. 10

1.2.3 JTAG ... 10
1.2.4 FT2232H Circuit Board .. 11

1.3 Active Host EndTerms ... 11
1.4 Active Transfer EndTerms ... 12

2 EPT Drivers ... 13

2.1 USB Driver ... 13

2.2 JTAG DLL Insert to Quartus II .. 19
2.2.1 Installing Quartus .. 19
2.2.2 Downloading Quartus ... 20

2.2.3 Quartus Installer .. 23
2.2.4 Adding the EPT_Blaster to Quartus II .. 27

2.3 Active Host Application DLL .. 29
3 Active Transfer Library... 33

3.1 EPT Active Transfer System Overview ... 34
3.2 Active Transfer Library .. 34

3.2.1 Active Trigger EndTerm ... 37

3.2.2 Active Transfer EndTerm ... 40
3.2.3 Active Block EndTerm ... 42

3.3 Timing Diagram for Active Transfer EndTerms .. 45
3.3.1 Active Trigger EndTerm Timing .. 45
3.3.2 Active Transfer EndTerm Timing ... 45

3.3.3 Active Block EndTerm Timing ... 46
4 Compiling, Synthesizing, and Programming CPLD ... 46

4.1 Setting up the Project and Compiling ... 47
4.1.1 Selecting Pins and Synthesizing.. 53

4.1.2 Programming the CPLD .. 60
5 Active Host Application .. 65

5.1 Trigger EndTerm .. 66
5.2 Transfer(Byte) EndTerm .. 66
5.3 Block EndTerm .. 66

5.4 Active Host DLL .. 67

5.4.1 Active Host Open Device.. 68
5.4.2 Active Host Read Callback Function .. 70
5.4.3 Active Host Triggers ... 71
5.4.4 Active Host Byte Transfers ... 73

5.4.5 Active Host Block Transfers ... 75

USB CPLD Development System User Manual

Page 3

6 Assembling, Building, and Executing a .NET Project on the PC 78

6.1 Creating a Project ... 79
6.1.1 Setting up the C# Express Environment x64 bit 80

6.2 Assembling Files into the Project ... 87
6.2.1 Changing Project Name .. 87
6.2.2 Add Files to Project ... 89

6.2.3 Adding Controls to the Project .. 91

6.2.4 Adding the DLL’s to the Project ... 95

6.2.5 Building the Project .. 96
6.2.6 Testing the Project... 97

7 The Development Process ... 101
7.1 Designing a Simple Data Collection Sampler .. 101

7.1.1 The Arduino Microcontroller Board ... 102
 Create Data Generator .. 102

7.1.2 ... 102
7.1.3 Select I/O’s for Fast Throughput on Arduino ... 103
7.1.4 Coding the Arduino Data Sampler .. 104

7.1.5 Building Arduino Project .. 107

7.1.6 Programming the Arduino... 110
7.1.7 CPLD Active Transfer EndTerm Coding and Initiation 112
7.1.8 CPLD: Define the User Design. .. 113

7.1.9 CPLD: Compile/Synthesize the Project .. 130
7.1.10 CPLD: Program the CPLD.. 134

7.1.11 PC: Design the Project .. 135
7.1.12 PC: Coding the Project .. 136
7.1.13 PC: Compiling the Active Host Application ... 148

7.1.14 Adding the DLL’s to the Project ... 149

7.1.15 Connecting the Project Together ... 150

7.1.16 Testing the Project... 154
8 Hyper Serial Port (HSP) Application .. 155

8.1 Summary of Hyper Serial Port (HSP) Capabilities .. 155

8.2 Embedded Scripting Evaluator .. 155

8.3 Send Character Timer ... 156

8.4 External Trigger .. 156

USB CPLD Development System User Manual

Page 4

1 Introduction and General Description
The Earth People Technology USB-CPLD development system hardware consists of a

High Speed (480 Mb/s) USB to parallel (8 bit) bus chip and a CPLD. The USB

interface provides both JTAG programming of the CPLD and a High Speed transfer

path. The software consists of the Active Host SDK for the PC. The firmware includes

the Active Transfer Library which is used in the CPLD to provide advanced functions

for control and data transfer to/from the Arduino.

The user’s Arduino code is developed to perform particular functions required by the

user (such as reading a temperature sensor). The code is downloaded to the

microcontroller using the Arduino IDE system provided as part of the microcontroller

development system. The EPT USB-CPLD Development System allows users to write

HDL code (either Verilog or VHDL) that will implement any digital logic circuit. The

user’s HDL code is compiled and synthesized and packaged into a programming file.

The programming file is programmed into the CPLD using the JTAG channel of the

USB to Serial chip, the FT2232H.The Active Host SDK contains a dll which maintains

device connection, polling, writes and includes a unique receive mechanism that

automatically transfers data from EPT-570-AP when data is ready. It also alerts the user

code when the dll has stored the transfer and the data is available to the software GUI

(graphical user interface). Users do not need to interface with the USB Host Driver or

any Windows drivers. They need only to include the Active Host dll in their projects.

The Active Transfer Libraries must be included in the CPLD project to take advantage

USB CPLD Development System User Manual

Page 5

of the configurability of the Active Host SDK. All of the drivers, libraries, and project

source code are available at www.earthpeopletechnology.com .

1.1 Test Driving the Active Host Test Application
The EPT-570-AP board comes pre-loaded with the EPT_Transfer_Test HDL project in

the CPLD. This project allows the user to test out the functions of the Active Host API

and the board hardware.

To test drive the application, connect the EPT-570-AP-U2 to the Windows PC using

Type A to Type Mini B USB cable. Load the driver for the board. See the section EPT

Drivers for instructions on loading the EPT-570-AP driver. If the USB driver fails to

load, the Windows OS will indicate that no driver was loaded for the device. Next, open

a Windows Explorer browser. Browse to the

Projects_ActiveHost_xxBit\EPT_Transfer_Test\EPT_Transfer_Test\bin\X64\Release\

folder on the UNO_USB_CPLD_PROJECT_CD. Choose the 64 Bit folder if your OS

supports 64 Bit, otherwise choose the 32 Bit folder. See the section “Assembling,

Building, and Executing a .NET Project on the PC” for instructions on determining your

OS version. Double click on the EPT_Transfer_Text.exe. The application should load

with a Windows form.

http://www.earthpeopletechnology.com/

USB CPLD Development System User Manual

Page 6

 With the application loaded, select the USB-CPLD board from the dropdown combo

box and click on the “Open” button.

USB CPLD Development System User Manual

Page 7

Leave the Address set at 2 for the Transfer Controls Group. And, leave the Address set

at 4 for the Block Controls Group.

Click on one of the LED buttons in the middle of the window. The corresponding LED

on the EPT-570-AP-U2 board should light up.

To exercise the Single Byte Transfer EndTerm, click the “LoopBack” button in the

Transfer Controls group. Type in several numbers separated by a space and less 256

into the Multiple Byte textbox. Then hit the Multi Byte button. The numbers appear in

the Receive Byte textbox.

To exercise the Block Transfer EndTerm, click the “Block8” or “Block16” button in the

Block Controls group. A pre-selected group of numbers appear in the Block Receive

textbox.

Press the PCB switches on the EPT-570-AP to view the Switch Controls in action.

USB CPLD Development System User Manual

Page 8

1.2 EPT-570-AP
 The EPT- 570-AP board is equipped with an Altera EPM570 CPLD; which is

programmed using the Altera Quartus II software. The CPLD has 570 Logic Elements

which is equivalent to 440 Macrocells. An on board 66 MHz oscillator is used by the

EPT Active Transfer Library to provide data transfer rates of up to 8 Mega Bytes per

second. Twenty Four I/O’s from the CPLD are attached to three 8 bit transceivers to

provide 5 Volt compatible I/O’s. These 74LVC245 bidirectional voltage translator/bus

transceivers are controlled by one enable and direction bit per transceiver. This means

the direction of the individual bits of each transceiver cannot be selected; the direction

is selected for all eight bits per transceiver. There are four green LED’s and two Push

Buttons that are controllable by the user code. The hardware features are as follows.

 Altera EPM570 CPLD with 440 Macrocells

 66 MHz oscillator for driving USB data transfers and users code

 Three bidirectional voltage translator/bus transceivers

 24 user Input/Outputs available as three 8 bit ports, 5 Volt compatible

 Four Green LED’s accessible by the user

 Two PCB switches accessible by the user

 All I/O connectors stack into the Arduino Uno

 Two 13x2 connectors for accepting the FT2232H Mini Module.

USB CPLD Development System User Manual

Page 9

USB CPLD Development System User Manual

 Page
10

1.2.1 High Speed USB Communications

The EPT-570-AP-U2 USB-CPLD Development system connects an FT2232H Dual

High Speed USB (480 Mbits/sec) chip to the CPLD. The CPLD uses a dedicated

channel on the FT2232H for high speed transfers to the PC. Using the EPT Active

Transfer Library, sustained speeds of 8 Mbytes/sec can be achieved. The transfers are

bi-directional.

1.2.2 Inputs and Outputs

There are 24 Inputs/Outputs which are +5 Volt tolerant. The I/O’s are organized as

three 8 bit directional ports. Each port must be defined as input or output. This means

that all 8 bits of a port will point in the same direction, depending on the direction bit of

the transceiver. The direction bit can be changed at any time, so that a port can change

from input to output in minimum setup time of 6 nanoseconds. Each port also has an

enable pin. This enable pin will enable or disable the bits of the port. If the port is

disabled, the bits will “float”.

1.2.3 JTAG

The EPT-570-AP-U2 uses the second channel of the FT2232H chip as a dedicated

CPLD programming port. The CPLD must be programmed via JTAG signals and the

FT2232H has built in JTAG signals. The CPLD can be programmed directly from

Quartus II by using the “jtag_hw_mbftdi_blaster.dll”. Just click on the Programmer

button and select the EPT-Blaster.

USB CPLD Development System User Manual

 Page
11

1.2.4 FT2232H Circuit Board

 The FT2232H Mini Module board contains an FTDI 2232H dual channel high

speed (480 Mb/s) USB to FIFO (first in-first out) integrated circuit to interface between

the Host PC and the CPLD. The FT2232H board provides a means of data conversion

from USB to serial/ parallel data and serial/parallel to USB for data being sent from the

CPLD to the PC. Channel A is configured as a JTAG bus and Channel B is configured

as an 8 bit parallel bus. CPLD Programming commands are transmitted via the JTAG

bus (channel A). Channel B has one dual port 4Kbyte FIFO for transmission from Host

PC to the CPLD, it also has one dual port 4Kbyte FIFO for receiving data from the

CPLD to the Host PC. The module uses the +5Vbus from the Host USB for self power.

The FT2232H Mini Module provides its own 12 MHz clock and +3.3V and +1.8V

power supplies. The +3.3V power supply output is used by the EPT-570-AP base board

for all of its +3.3V power budget. Figure 4 contains an illustration of the FT2232H

board.

1.3 Active Host EndTerms
The Active Host SDK is provided as a dll which easily interfaces to application

software written in C#, C++ or C. It runs on the PC and provides transparent connection

USB CPLD Development System User Manual

 Page
12

from PC application code through the USB driver to the user CPLD code. The user code

connects to “Endterms” in the Active Host dll. These Host “Endterms” have

complementary HDL “Endterms” in the Active Transfer Library. Users have seamless

bi-directional communications at their disposal in the form of:

 Trigger Endterm

 Transfer Endterm

 Block Endterm

User code writes to the Endterms as function calls. Just include the address of the

individual module (there are eight individually addressable modules of each Endterm).

Immediately after writing to the selected Endterm, the value is received at the HDL

Endterm in the CPLD.

Receiving data from the CPLD is made simple by Active Host. Active Host transfers

data from the CPLD as soon as it is available. It stores the transferred data into circular

buffer. When the transfer is complete, Active Host invokes a callback function which is

registered in the users application. This callback function provides a mechanism to

transparently receive data from the CPLD. The user application does not need to

schedule a read from the USB or call any blocking threads.

1.4 Active Transfer EndTerms
The Active Transfer Library is a portfolio of HDL modules that provides an easy to use

yet powerful USB transfer mechanism. The user HDL code communicates with

EndTerms in the form of modules. These EndTerm modules are commensurate with the

Active Host EndTerms. There are three types of EndTerms in the Active Transfer

Library:

 Trigger Endterm

 Transfer Endterm

 Block Endterm

They each have a simple interface that the user HDL code can use to send or receive

data across the USB. Writing to an EndTerm will cause the data to immediately arrive

USB CPLD Development System User Manual

 Page
13

ACTIVE TRANSFER
LIBRARY

TRIGGER ENDTERM

SINGLE TRANSFER
ENDTERM

BLOCK ENDTERM

USER CODE

at the commensurate EndTerm in the Active Host/user application. The transfer through

the USB is transparent. User HDL code doesn’t need to set up Endpoints or respond to

Host initiated data requests. The whole process is easy yet powerful.

2 EPT Drivers
The EPT USB-CPLD Development system requires drivers for any interaction between

PC and the EPT-570-AP-U2. The communication between the two consists of

programming the CPLD and data transfer. In both cases, the USB Driver is required.

This will allow Windows to recognize the USB Chip and setup a pathway for Windows

to communicate with the USB hardware.

2.1 USB Driver
The EPT-570-AP uses an FTDI FT2232H USB to Serial chip. This chip provides the

USB interface to the PC and the serial/FIFO interface to the CPLD. The FT2232H

requires the use of the EPT USB driver. To install the driver onto your PC, use the

EPT_2.08.24 Folder. The installation of the EPT_2.08.24 driver is easily accomplished

using the “Update Driver Software” utility in Device Manager.

Locate the EPT_2.08.24 folder in the Drivers folder of the EPT USB-CPLD

Development System CD using Windows Explorer.

USB CPLD Development System User Manual

 Page
14

Plug in the EPT-570-AP device into an available USB port.

Windows will attempt to locate a driver for the USB device. When it does not find one,

it will report a error, “Device driver software was not successfully installed”. Ignore this

error.

Go to Start->Control Panel

USB CPLD Development System User Manual

 Page
15

Locate Device Manager and click on it.

Locate the entry under “Other devices”. Right click “EPT USB <->Serial&JTAG

Cable” and select “Update Driver Software…”.

USB CPLD Development System User Manual

 Page
16

At the Update Driver Software Window, select “Browse my computer for driver

software”.

Click the Browse button and browse to the \Drivers\EPT_2.08.24 folder of the EPT

USB-CPLD Development System CD. Click the Ok button.

USB CPLD Development System User Manual

 Page
17

Click the Next button

The next window is the Windows Security notice. The EPT driver is not signed by

Windows. Click on the “Install this driver software anyway”.

Windows will add the EPT_2.08.24 driver to the System Registry.

USB CPLD Development System User Manual

 Page
18

When Windows has completed the update driver the following screen will be displayed.

Channel A of the EPT-570-AP is ready for use.

Next, repeat the process for Channel B.

The driver files will automatically install in the System Registry.

USB CPLD Development System User Manual

 Page
19

When this is complete, the drivers are installed and the EPT-570-AP can be used with

for programming and USB data transfers.

2.2 JTAG DLL Insert to Quartus II
The JTAG DLL Insert to Quartus II allows the Programmer Tool under Quartus to

recognize the EPT-570-AP. The EPT-570-AP can then be selected and perform

programming of the CPLD. The file, jtag_hw_mbftdi_blaster.dll must be placed into the

folder that hosts the jtag_server for Quartus. This dll is available for Windows XP 32-

bit, Windows 7 32-bit and Windows 7 64-bit.

2.2.1 Installing Quartus

Locate the Quartus_12.1sp1 folder on the EPT USB-CPLD Development System DVD.

USB CPLD Development System User Manual

 Page
20

If you don’t have the EPT USB-CPLD Development System DVD, you can download

the Quartus II by following the directions in the Section Downloading Quartus.

If you don’t need to download Quartus, double click on the

12.1sp1_xxx_quartus_free_widows.exe (the xxx is the build number of the file, it is

subject to change). The Quartus II Web Edition will start the installation process.

When the install shield window pops up click “Yes” or if needed, enter the

administrator password for the users PC. Click “Ok”

Next, skip down to the Quartus Installer section to complete the Quartus installation.

2.2.2 Downloading Quartus

The first thing to do in order build a project in Quartus is to download and install the

application. You can find the latest version of Quartus at:

https://www.altera.com/download/dnl-index.jsp

Click on the Download Windows Version.

https://www.altera.com/download/dnl-index.jsp

USB CPLD Development System User Manual

 Page
21

The next page will require you to sign into your “myAltera” account. If you do not have

one, follow the directions under the box, “Don’t have an account?”

Once you have created your myAltera account, enter the User Name and Password. The

next window will ask you to allow pop ups so that the file download can proceed.

USB CPLD Development System User Manual

 Page
22

Click on the “Allow Once” button. The next window will appear. It is the Download

Manager.

Click on the ”Allow” button. This will bring up the Save As dialog box. Save the

altera_installer.external.exe to a download file.

USB CPLD Development System User Manual

 Page
23

Click the Save button. This will start the Download Manager.

When it finishes, click the “Launch” button.

Click “Ok” and “Yes” to the following screen.

2.2.3 Quartus Installer

Click “Next” on the Introduction Window.

Click the checkbox to agree to the license terms. Then click “Next”.

USB CPLD Development System User Manual

 Page
24

Click “Next” and accept the defaults.

Click “Next” to accept the defaults

USB CPLD Development System User Manual

 Page
25

At the Select Products Window, de-select the Quartus II Supbscription Edition by

clicking on its check box so that the box is not checked. Then click on the check box by

the Quartus II Web Edition (Free).

Click “Next” to accept the defaults

USB CPLD Development System User Manual

 Page
26

Click “Next” to accept the defaults

Wait for the download to complete. The file is 3.5 GB, so this could take a couple of

hours depending on your internet connection. When installation is complete, the

following window appears.

USB CPLD Development System User Manual

 Page
27

Click “Ok”, then click “Finish”. The Quartus II is now installed and ready to be used.

2.2.4 Adding the EPT_Blaster to Quartus II

Close out the Quartus II application. Locate the \Drivers\EPT_Blaster folder on the EPT

USB-CPLD Development System CD.

If your system is Windows 64 bit follow these directions:

Windows 64 bit

1. Open the C:\EPT USB-CPLD Development System

CD\Drivers\EPT_Blaster\x64 folder.

2. Select the file “jtag_hw_mbftdi_blaster.dll” and copy it.

3. Browse over to C:altera\12.1\quartus\bin64.

USB CPLD Development System User Manual

 Page
28

4. Right click in the folder and select Paste

5. Click Ok.

6. Open the Quartus II application.

The DLL is installed and the JTAG server should recognize it. Go to the section

“Programming the CPLD” of this manual for testing of the programming. If the driver

is not found in the Programmer Tool->Hardware Setup box, see the JTAG DLL Insert

to Quartus II Troubleshooting Guide.

If your system is Windows 32 bit follow these directions:

Windows 32 bit

1. Open the C:\ EPT USB-CPLD Development System

CD\Drivers\EPT_Blaster\x86 folder.

2. Select the file “jtag_hw_mbftdi_blaster.dll” and copy it

3. Browse over to C:altera\12.1\quartus\bin.

4. Right click in the folder and select Paste

5. Click Ok.

6. Open the Quartus II application.

USB CPLD Development System User Manual

 Page
29

The DLL is installed and the JTAG server should recognize it. Go to the section

“Programming the CPLD” of this manual for testing of the programming. If the driver

is not found in the Programmer Tool->Hardware Setup box, see the JTAG DLL Insert

to Quartus II Troubleshooting Guide.

2.3 Active Host Application DLL
Download the latest version of Microsoft Visual C# 2010 Express environment from

Microsoft. It’s a free download.

http://www.microsoft.com/visualstudio/eng/downloads#d-2010-express

Go to the website and click on the “+” icon next to the Visual C# 2010 Express.

http://www.microsoft.com/visualstudio/eng/downloads#d-2010-express

USB CPLD Development System User Manual

 Page
30

Click on the “Install now” hypertext.

Click the “Run” button.

Click “Next”, accept the license agreement. Click “Next”.

USB CPLD Development System User Manual

 Page
31

Visual C# 2010 Express will install. This may take up to twenty minutes depending on

your internet connection.

The installed successfully window will be displayed when Visual C# Express is ready

to use.

To use the Active Host Application Software, the Active Host DLL and the ftd2xx DLL

must be included in the Microsoft Visual project. The Active Host Application Software

will allow the user to create a custom applications on the PC using the EndTerms to

perform Triggers and Data Transfer to/from the EPT-570-AP. The methods and

parameters of the Active Host DLL are explained in the Active Host Application

section. Locate the \Projects_ActiveHost_64Bit and \Projects_ActiveHost_32Bit folders

on the EPT USB-CPLD Development System CD.

Locate the Projects_ActiveHost_64Bit and \Projects_ActiveHost_32Bit folders in the

EPT USB-CPLD Development System using Windows Explorer.

USB CPLD Development System User Manual

 Page
32

Locate the Projects_ActiveHost_32Bit \ActiveHost_1.0.0.8\Bin folder and copy the

ActiveHost32.dll and the ftd2xx32.dll.

Save the DLL’s in the \bin\Release folder for the 32 bit Windows 7 OS of the user

project under the Microsoft C# Express project. See the Active Host Application for

instructions on how to add the dll to the Microsoft C# Express project.

USB CPLD Development System User Manual

 Page
33

Locate the Projects_ActiveHost_64Bit \ActiveHost_1.0.0.8\Bin folder and copy the

ActiveHost64.dll and the ftd2xx64.dll.

Save the DLL’s in the bin\x64\Release folder of the user project under the Microsoft C#

Express project. See the Active Host Application section of the EPT USB-CPLD

Development System User Manuals for instructions on how to add the dll to the

Microsoft C# Express project.

3 Active Transfer Library
The Active Transfer Library is an HDL library designed to transfer data to and from the

EPT-570-AP via High Speed (480 MB/s) USB. It is a set of pre-compiled HDL files

that the user will add to their project before building it. The description of what the

library does and how to use its components are described in this manual.

TRIGGER

TRANSFER ARDUINO

BLOCK

FTD2XX
DLL, USB
DRIVER

ACTIVE HOST
APPICATION

TRIGGER IN
TRIGGER OUT

TRANSFER IN
TRANSFER OUT

BLOCK IN
BLOCK OUT

EPM570 PLD

ACTIVE TRANSFER
LIBRARY

USB BUS

TRIGGER IN
TRIGGER OUT

TRANSFER IN
TRANSFER OUT

BLOCK IN
BLOCK OUT

USER CODE

8 BIT BUS

USB CPLD Development System User Manual

 Page
34

3.1 EPT Active Transfer System Overview
The Active Transfer System components consist of the following:

 active_transfer_library.vqm

 active_trigger.vqm

 active_transfer.vqm

 active_block.vqm

The Active_Transfer_Library provides the communication to the USB hardware. While

separate Input and Output buses provide bi-directional communications with the plug in

modules. See Figure 6 for an overview of the EPT Active_Transfer system.

Figure 6 EPT Active Transfer Library Overview

ACTIVE TRANSFER
LIBRARY

TRIGGER IN
TRIGGER OUT

TRANSFER IN
TRANSFER OUT

BLOCK IN
BLOCK OUT

USER CODE

UC_IN[22..0]

UC_OUT[21..0]

INPUT/OUTPUT PINS

TOP LEVEL

Figure 6 shows how the modules of the EPT Active Transfer Library attach to the

overall user project. The EPT Active_Transfer_Library.vqm, Active_Trigger.vqm,

Active_Transfer.vqm and Active_Block.vqm modules are instantiated in the top level

of the user project. The User_Code.v module is also instantiated in the top level. The

Active_Transfer modules communicate with the User_Code through module

parameters. Each module is a bi-directional component that facilitates data transfer from

PC to CPLD. The user code can send a transfer to the Host, and the Host can send a

transfer to the user code. This provides significant control for both data transfers and

signaling from the user code to PC. The Triggers are used to send momentary signals

that can turn on (or off) functions in user code or PC. The Active Transfer is used to

send a single byte. And the Active Block is used to send a block of data. The

Active_Transfer and Active_Block modules have addressing built into them. This

means the user can declare up to 8 individual instantiations of Active_Transfer or

Active_Block, and send/receive data to each module separately.

3.2 Active Transfer Library
The Active Transfer Library contains the command, control, and data transfer

mechanism that allows users to quickly build powerful communication schemes in the

CPLD. Coupled with the Active Host application on the PC, this tools allows users to

USB CPLD Development System User Manual

 Page
35

focus on creating programmable logic applications and not have to become distracted

by USB Host drivers and timing issues. The Active Transfer Library is pre-compiled

file that the user will include in the project files.

USB CPLD Development System User Manual

 Page
36

USB CPLD Development System User Manual

 Page
37

The interface from the library to the user code is two uni directional buses,

UC_IN[22:0] and UC_OUT[20:0]. The UC_IN[22:0] bus is an output bus (from the

library, input bus to the Active Modules) that is used channel data, address, length and

control information to the Active Modules. The UC_OUT[21:0] bus is an input bus (to

the library, output bus from the Active Modules) that is used to communicate data,

address, length, and control information to the Active Modules.

The control buses, aa[1:0], bc_in[1:0], bc_out[2:0], and bd_inout[7:0] are used to

channel data, and control signals to the USB interface chip. These signals are connected

directly to input and output pins of the CPLD.

3.2.1 Active Trigger EndTerm

The Active Trigger has eight individual self resetting, active high, signals. These signals

are used to send a momentary turn on/off command to Host/User code. The Active

Trigger is not addressable so the module will be instantiated only once in the top level.

To send a trigger, decide which bit (or multiple bits) of the eight bits you want to send

the trigger on. Then, set that bit (or bits) high. The Active Transfer Library will send a

high on that trigger bit for one clock cycle (66 MHz), then reset itself to zero. The bit

can stay high on the user code and does not need to be reset to zero. However, if the

user sends another trigger using the trigger byte, then any bit that is set high will cause a

trigger to occur on the Host side.

USB CPLD Development System User Manual

 Page
38

So, care should be used if the user code uses byte masks to send triggers. It is best to set

only the trigger bits needed for a given time when sending triggers.

The user code must be setup to receive triggers from the Host. This can be done by

using an asynchronous always block. Whenever a change occurs on a particular trigger

bit (or bits), a conditional branch can detect if the trigger bit is for that block of code.

Then, execute some code based on that trigger.

USB CPLD Development System User Manual

 Page
39

USB CPLD Development System User Manual

 Page
40

3.2.2 Active Transfer EndTerm

The Active Transfer module is used to send or receive a byte to/from the Host. This is

useful when the user’s microcontroller needs to send a byte from a measurement to the

Host for display or processing. The Active Transfer module is addressable, so up to

eight individual modules can be instantiated and separately addressed.

To send a byte to the Host, select the appropriate address that corresponds to an address

on Host side. Place the byte in the “transfer_to_host” parameter, then strobe the

“start_transfer” bit. Setting the “start_transfer” bit to high will send one byte from the

“transfer_to_host” byte to the Host on the next clock high signal (66 MHz). The

“start_transfer” bit can stay high for the duration of the operation of the device, the

Active Transfer module will not send another byte. In order to send another byte, the

user must cycle the “start_transfer” bit to low for a minimum of one clock cycle (66

MHz). After the “start_transfer” bit has been cycled low, the rising edge of the bit will

cause the byte on the “transfer_to_host” parameter to transfer to the host.

USB CPLD Development System User Manual

 Page
41

To receive a byte, the Active Host will send a byte using it’s dll. The user code must

monitor the transfer_received port. The transfer_received port will assert high for one

clock cycle (66 MHz) when a byte is ready for reading on the transfer_to_device port.

User code should use an asynchronous always block to detect when the

USB CPLD Development System User Manual

 Page
42

transfer_received port is asserted. Upon assertion, the user code should read the byte

from the transfer_to_device port into a local register.

3.2.3 Active Block EndTerm

The Active Block module is designed to transfer blocks of data between Host and User

Code and vice versa. This allows buffers of data to be transferred with a minimal

amount of code. The Active Block module is addressable, so up to eight individual

modules can be instantiated and separately addressed. The length of the block to be

transferred must also be specified in the uc_length port.

USB CPLD Development System User Manual

 Page
43

To send a block, it’s best to have buffer filled in a previous transaction, Then assert the

start_transfer bit. This method is opposed to collecting and processing data bytes after

the start_transfer bit has been asserted and data is being sent to the Host.

Once the buffer to send is filled with the requisite amount of data, the address and

buffer length should be written to the uc_addr and uc_length ports. Set the start_transfer

bit high, the user code should monitor the transfer_ready port. At the rising edge of the

transfer_ready port, the byte at transfer_to_host port is transferred to the USB chip.

Once this occurs, the user code should copy the next byte in the buffer to

transfer_to_host port. On the next rising edge of transfer-ready, the byte at

transfer_to_host will be transferred to theUSB chip. This process continues until the

number of bytes desicribed by the uc_length have been transferred into the USB chip.

USB CPLD Development System User Manual

 Page
44

USB CPLD Development System User Manual

 Page
45

To receive a buffer from the Host, the user code should monitor the transfer_received

port for assertion. When the bit is asserted, the next rising edge of transfer_ready will

indicate that the byte at transfer_to_device is ready for the user code to read.

[Add code snippet showing Active Block Module bytes received by the user code]

3.3 Timing Diagram for Active Transfer EndTerms
The Active Transfer Library uses the 66 MHz clock to organize the transfers to Host

and transfer to Device. The timing of the transfers depends on this clock and the

specifications of the USB chip. Users should use the timing diagrams to ensure proper

operation of user code in data transfer.

3.3.1 Active Trigger EndTerm Timing

Figure xx Active Trigger to Host Timing

Figure xx Active Trigger to Device Timing

3.3.2 Active Transfer EndTerm Timing

Figure xx Active Transfer To Host Timing

USB CPLD Development System User Manual

 Page
46

Figure xx Active Transfer To Device Timing

3.3.3 Active Block EndTerm Timing

Figure xx Active Block To Host Timing

Figure xx Active Block To Device Timing

4 Compiling, Synthesizing, and Programming CPLD

The CPLD on the EPT-570-AP-U2 can be programmed with the Active Transfer

Library and custom HDL code created by the user. Programming the CPLD requires the

USB CPLD Development System User Manual

 Page
47

use of the Quartus II software and a standard USB cable. There are no extra parts to

buy, just plug in the USB cable. Once the user HDL code is written according to the

syntax rules of the language (Verilog and VHDL) it can be compiled and synthesized

using the Quartus II software. This manual will not focus on HDL coding or proper

coding techniques, instead it will use the example code to compile, synthesize and

program the CPLD.

4.1 Setting up the Project and Compiling
Once the HDL code (Verilog or VHDL) is written and verified using a simulator, a

project can be created using Quartus II. Writing the HDL code and simulating it will be

covered in later sections. Bring up Quartus II, then use Windows Explorer to browse to

c:/altera/xxx/quartus/qdesigns create a new directory called: “EPT_Transfer_Test”.

Open Quartus II by clicking on the icon .

USB CPLD Development System User Manual

 Page
48

 Under Quartus, Select File->New Project Wizard. The Wizard will walk you through

setting up files and directories for your project.

At the Top-Level Entity page, browse to the c:/altera/xxx/quartus/qdesigns directory to

store your project. Type in a name for your project “EPT_570_AP_U2_Top”.

USB CPLD Development System User Manual

 Page
49

Select Next. At the Add Files window: Browse to the

\Projects_HDL\EPT_Transfer_Test \src folder of the EPT USB-CPLD Development

System CD. Copy the files from the \src directory.

 Active_block.vqm

 Active_transfer.vqm

 Active_trigger.vqm

 Active_transfer_library.vqm

 eptWireOr.v

 mem_array.v

 read_control_logic.v

 write_control_logic.v

 EPT_570_AP_U2_Top.v

USB CPLD Development System User Manual

 Page
50

Select Next, at the Device Family group, select MAX II for Family. In the Available

Devices group, browse down to EPM570T100C5 for Name.

USB CPLD Development System User Manual

 Page
51

Select Next, leave defaults for the EDA Tool Settings.

USB CPLD Development System User Manual

 Page
52

Select Next, then select Finish. You are done with the project level selections.

USB CPLD Development System User Manual

 Page
53

Next, we will select the pins and synthesize the project.

4.1.1 Selecting Pins and Synthesizing

With the project created, we need to assign pins to the project. The signals defined in

the top level file (in this case: EPT_570_AP_U2_Top.v) will connect directly to pins on

the CPLD. The Pin Planner Tool from Quartus II will add the pins and check to verify

that our pin selections do not violate any restrictions of the device. In the case of this

example we will import pin assignments that created at an earlier time. Under

Assignments, Select Import Assignments.

At the Import Assignment dialog box, Browse to the

\Projects_HDL\EPT_Transfer_Test \Altera_EPM570_U2 folder of the EPT USB-CPLD

Development System CD. Select the “EPT_570_AP_U2_Top.qsf” file.

USB CPLD Development System User Manual

 Page
54

Click Ok. Under Assignments, Select Pin Planner. Verify the pins have been imported

correctly.

USB CPLD Development System User Manual

 Page
55

The pin locations should not need to be changed for EPT USB CPLD Development

System. However, if you need to change any pin location, just click on the “location”

column for the particular node you wish to change. Then, select the new pin location

from the drop down box.

Exit the Pin Planner. Next, we need to add the Synopsys Design Constraint file. This

file contains timing constraints which forces the built in tool called TimeQuest Timing

Analyzer to analyze the path of the synthesized HDL code with setup and hold times of

the internal registers. It takes note of any path that may be too long to appropriately

meet the timing qualifications. For more information on TimeQuest Timing Analyzer,

see

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf?GSA_pos=1&WT.oss_r=1&

WT.oss=TimeQuest Timing Analyzer

USB CPLD Development System User Manual

 Page
56

Browse to the \Projects_HDL\EPT_Transfer_Test \Altera_EPM570_U2 folder of the

EPT USB-CPLD Development System CD. Select the “EPT_570_AP_U2_Top.sdc”

file.

Copy the file and browse to c:\altera\xxx\quartus\qdesigns\EPT_Transfer_Test

directory. Paste the file.

Select the Start Compilation button.

USB CPLD Development System User Manual

 Page
57

If you forget to include a file or some other error you should expect to see a screen

similar to this:

USB CPLD Development System User Manual

 Page
58

Click Ok, the select the “Error” tab to see the error.

The error in this case is the missing file “sync_fifo”. Click on the Assignment menu,

then select Settings, then select Files. Add the “sync_fifo.v” file from the database.

USB CPLD Development System User Manual

 Page
59

Click Ok then re-run the Compile process. After successful completion, the screen

should look like the following:

USB CPLD Development System User Manual

 Page
60

At this point the project has been successfully compiled, synthesized and a

programming file has been produce. See the next section on how to program the CPLD.

4.1.2 Programming the CPLD

Programming the CPLD is quick and easy. All that is required is a standard USB cable

with a Mini Type B connector on one end and the EPT_Blaster Driver DLL. Connect

the EPT-570-AP to the PC, open up Quartus II, open the programmer tool, and click the

Start button. To program the CPLD, follow the steps to install the USB Driver and the

JTAG Driver Insert for Quartus II.

If the project created in the previous sections is not open, open it. Click on the

Programmer button.

The Programmer Window will open up with the programming file selected. Click on the

Hardware Setup button in the upper left corner.

USB CPLD Development System User Manual

 Page
61

The Hardware Setup Window will open. In the “Available hardware items”, double

click on “EPT-Blaster v1.3b”.

If you successfully double clicked, the “Currently selected hardware:” dropdown box

will show the “EPT-Blaster v1.3b”.

USB CPLD Development System User Manual

 Page
62

Click on the Auto-Detect button. This will verify that the EPT-Blaster driver can

connect with the EPT-570-AP device.

Select the EPM570 under “Device”.

USB CPLD Development System User Manual

 Page
63

Click on the “Change File” button and browse to the output_files folder.

Click on the EPT_570_AP_U2_Top.pof file to select it.

Click the Open button in the lower right corner.

Next, selet the checkbox under the “Program/Configure” of the Programmer Tool. The

checkboxes for the CFM and UFM will be selected automatically.

USB CPLD Development System User Manual

 Page
64

Click on the Start button to to start programming the CPLD. The Progress bar will

indicate the progress of programming.

When the programming is complete, the Progress bar will indicate success.

USB CPLD Development System User Manual

 Page
65

At this point, the EPT-570-AP is programmed and ready for use. To test that the CPLD

is properly programmed, bring up the Active Host Test Tool. Click on one of the LED’s

and verify that the LED selected lights up. Press one of the switches on the board and

ensure that the switch is captured on the Active Host Test Tool. Now you are ready to

connect to the Arduino Uno and write some code to transfer data between

microcontroller and PC.

5 Active Host Application

The Active Host SDK is provided as a dll which easily interfaces to application

software written in C#, C++ or C. It runs on the PC and provides transparent connection

from PC application code through the USB driver to the user CPLD code. The user code

connects to “Endterms” in the Active Host dll. These host “Endterms” have

complementary HDL “Endterms” in the Active Transfer Library. Users have seamless

bi-directional communications at their disposal in the form of:

 Trigger Endterm

 Transfer Endterm

 Block Endterm

User code writes to the Endterms as function calls. Just include the address of the

individual module (there are eight individually addressable modules of each Endterm).

Immediately after writing to the selected Endterm, the value is received at the HDL

Endterm in the CPLD. The Trigger Endterms are used as “switches”. The user code can

set a Trigger bit in the CPLD and cause an event to occur. The Transfer Endterm sends

one byte to the CPLD. The Block Endterm sends a block of bytes. By using one of the

Active Host Endterms, the user can create a dynamic, bi-directional, and configurable

data transfer design.

USB CPLD Development System User Manual

 Page
66

5.1 Trigger EndTerm
The Trigger EndTerm is a software component that provides a direct path from the

users application to the commensurate Trigger EndTerm in the CPLD. The Trigger has

eight bits and is intended to be used to provide a switch at the opposite EndTerm. They

are fast acting and are not stored or buffered by memory. When the user code sets a

Trigger, it is immediately passed through to the opposite EndTerm via the USB driver.

When receiving Trigger, the user application is required to respond to a callback from

the Active Host dll.

5.2 Transfer(Byte) EndTerm
The Transfer EndTerm is a software component that provides a direct path from the

users application to the commensurate Transfer EndTerm in the CPLD. It is used to

transfer a byte to and from the CPLD. Eight separate Transfer EndTerm modules can be

instantiated in the CPLD. Each module is addressed by the user application. Sending a

byte is easy, just use the function call with the address and byte value. The byte is

immediately sent to the corresponding EndTerm in the CPLD. Receiving a byte is just

as easy, a callback function is registered at initialization. When the CPLD transmits a

byte using its EndTerm, the callback function is called in the user application. The user

code must store this byte in order to use it. The incoming Transfers are stored in a

circular buffer in memory. This allows the user code to fetch the transfers with out

losing bytes.

5.3 Block EndTerm
The Block EndTerm is a software component that provides a direct path from the users

application to the commensurate Block EndTerm in the CPLD. The Block EndTerm is

used to transfer a complete block to the CPLD. Block size is limited to 1 to 256 bytes.

Eight separate Block EndTerm modules can be instantiated in the CPLD. Each module

is addressed by the user application. Sending a block is easy, just use the function call

with the address, block length, byte array. The block is buffered into a circular buffer in

memory then transmitted via the USB bus to the Block EndTerm in the CPLD.

Receiving a block is just as easy, a callback function is registered at initialization. When

the CPLD transmits a block using its EndTerm, the callback function is called in the

USB CPLD Development System User Manual

 Page
67

user application. The incoming Transfers are stored in a circular buffer in memory. This

allows the user code to fetch the transfers with out losing bytes.

5.4 Active Host DLL
The Active_Host DLL is designed to transfer data from the CPLD when it becomes

available. The data will be stored into local memory of the PC, and an event will be

triggered to inform the user code that data is available from the addressed module of the

CPLD. This method of automatically moving data from the user code Endterm in the

CPLD makes the data transfer transparent.

The data seamlessly appears in Host PC memory from the Arduino. The user code will

direct the data to a control such as a textbox on a Windows Form. The transparent

receive transfer path is made possible by a Callback mechanism in the Active Host dll.

The dll calls a registered callback function in the user code. The user code callback can

be designed to generate any number of events to handle the received data.

The user application will access the CPLD by use of functions contained in the Active

Host dll. The functions to access the CPLD are:

 EPT_AH_GetName()

 EPT_AH_GetVersionString()

 EPT_AH_GetVersionControl()

 EPT_AH_GetInterfaceVersion()

 EPT_AH_CheckCompatibility()

 EPT_AH_Open()

 EPT_AH_Close()

 EPT_AH_Initialize()

 EPT_AH_Release()

 EPT_AH_QueryDevices()

 EPT_AH_SelectActiveDeviceByName()

 EPT_AH_SelectActiveDeviceByIndex()

 EPT_AH_GetDeviceName()

 EPT_AH_GetDeviceSerial()

 EPT_AH_OpenDeviceByIndex()

 EPT_AH_CloseDeviceByIndex()

USB CPLD Development System User Manual

 Page
68

 EPT_AH_CloseDeviceByName()

 EPT_AH_SendTrigger ()

 EPT_AH_SendByte ()

 EPT_AH_SendBlock ()

 EPT_AH_SendTransferControlByte()

 EPT_AH_RegisterReadCallback ()

 EPT_AH_GetLastError()

 EPT_AH_PerformSelfTest()

 EPT_AH_LEDBlinky()

 EPT_AH_SetDebugMode()

 EPT_AH_RegisterReadCallbackForChannel()

 EPT_AH_FlushDeviceChannelBuffer()

 EPT_AH_GetDeviceChannelFreeBufferBytes()

 EPT_AH_GetDeviceChannelPendingBufferBytes()

 EPT_AH_SetChannelConnectionFlag()

 EPT_AH_GetChannelConnectionFlag()

5.4.1 Active Host Open Device

To use the library functions for data transfer and triggering, an Earth People

Technology device must be opened. The first function called when the Windows Form

loads up is the <project_name>_Load(). This function is called automatically upon the

completion of the Windows Form, so there is no need to do anything to call it. Once this

function is called, it in turn calls the ListDevices(). Use the function List Devices() to

detect all EPT devices connected to the PC.

The ListDevices() function calls the EPT_AH_Open() function to load up the

ActiveHost Dll. Next, it calls EPT_AH_QueryDevices() which searches through the

registry files to determine the number of EPT devices attached to the PC. Next,

EPT_AH_GetDeviceName() is called inside a for loop to return the ASCII name of

each device attached to the PC. It will automatically populate the combo box,

cmbDevList with all the EPT devices it finds.

USB CPLD Development System User Manual

 Page
69

The user will select the device from the drop down combo box. This can be seen when

the Windows Form is opened and the cmbDevList combo box is populated with all the

devices. The selected device will be stored as an index number in the variable

device_index.

In order to select the device, the user will click on the “Open” button which calls the

Open_Device() function. The device_index is passed into the

EPT_AH_OpenDeviceByIndex() function. If the function is successful, the device

name is displayed in the label, labelDeviceCnt. Next, the device is made the active

USB CPLD Development System User Manual

 Page
70

device and the callback function is registered. Finally, the Open button is grayed out

and the Close button is made active.

5.4.2 Active Host Read Callback Function

The local callback function is populated. It resides in the active_transfer.cs file. This

function will be called from the Active Host dll. When the EPT Device has transferred

data to the PC, the callback function will do something with the data and command.

USB CPLD Development System User Manual

 Page
71

Because the callback function communicates directly with the dll and must pass

pointers from the dll to the C# Windows Form, the Marshaling scheme must be used.

Marshaling allows pointer variables created in the dll to be passed into the C#. It is an

advanced topic and will not be covered in this manual.

5.4.3 Active Host Triggers

The user application can send a trigger to the CPLD by using the

EPT_AH_SendTrigger() function. First, open the EPT device to be used with

EPT_AH_OpenDeviceByIndex(). Call the function with the bit or bits to assert high on

the trigger byte as the parameter. Then execute the function, the trigger bit or bits will

momentarily assert high in the user code on the CPLD.

To detect a trigger from the CPLD, the user application must subscribe to the event

created when the incoming trigger has arrived at the Read Callback function. The Read

Callback must store the incoming trigger in a local variable. A switch statement is used

to decode which event should be called to handle the incoming received data.

 TRIGGER_IN

 TRANSFER_IN

 BLOCK_IN

USB CPLD Development System User Manual

 Page
72

The event handler function for the TRIGGER_IN’s uses a switch statement to

determine which trigger was asserted and what to do with it.

USB CPLD Development System User Manual

 Page
73

The receive callback method is complex, however, Earth People Technology has

created several projects which implement callbacks. Any part of these sample projects

can copied and pasted into a user’s project.

5.4.4 Active Host Byte Transfers

The Active Host Byte Transfer EndTerm is designed to send/receive one byte to/from

the EPT Device. To send a byte to the Device, the appropriate address must be selected

for the Transfer module in the CPLD. Up to eight modules can be instantiated in the

user code on the CPLD. Each module has its own address.

Use the function EPT_AH_SendByte() to send a byte the selected module. First, open

the EPT device to be used with EPT_AH_OpenDeviceByIndex(). Then add the address

of the transfer module as the first parameter of the EPT_AH_SendByte() function. Enter

the byte to be transferred in the second parameter. Then execute the function, the byte

will appear in the ports of the Active Transfer module in the user code on the CPLD.

To transfer data from the CPLD Device, a polling technique is used. This polling

technique is because the Bulk Transfer USB is a Host initiated bus. The Device will not

transfer any bytes until the Host commands it to. If the Device has data to send to the

Host in an asynchronous manner (meaning the Host did not command the Device to

send data), the Host must periodically check the Device for data in it’s transmit FIFO. If

data exists, the Host will command the Device to send it’s data. The received data is

USB CPLD Development System User Manual

 Page
74

then stored into local memory and register bits are set that will indicate data has been

received from a particular address.

To receive a byte transfer from the Active host dll, user code must subscribe to the

event created when the incoming byte transfer has arrived at the Read Callback

function. The Read Callback must store the incoming transfer payload and module

address in a local memory block. A switch statement is used to decode which event

should be called to handle the incoming received data. The event handler function will

check for any bytes read for that address.

USB CPLD Development System User Manual

 Page
75

The EventHandler function EPTParseReceive() is called by the Read Callback function.

The EPTParseReceive() function will examine the command of the incoming byte

transfer and determine which receive function to call.

For our example project, the TransferOutReceive() function writes the Transfer byte

received to a text block. The receive callback method is complex, however, Earth

People Technology has created several projects which implement callbacks. Any part of

these sample projects can copied and pasted into a user’s project.

5.4.5 Active Host Block Transfers

The Active Host Block Transfer is designed to transfer blocks of data between Host and

CPLD and vice versa through the Block EndTerm. This allows buffers of data to be

transferred with a minimal amount of code. The Active Host Block module (in the User

Code) is addressable, so up to eight individual modules can be instantiated and

separately addressed. The length of the block to be transferred must also be specified.

The Block EndTerm is limited to 1 to 256 bytes.

To send a block, first, open the EPT device to be used with

EPT_AH_OpenDeviceByIndex(). Next, use the EPT_AH_SendBlock() function to send

the block. Add the address of the transfer module as the first parameter. Next, place the

pointer to the buffer in the second parameter of EPT_AH_SendBlock(). Add the length

USB CPLD Development System User Manual

 Page
76

of the buffer as the third parameter. Then execute the function, the entire buffer will be

transferred to the USB chip. The data is available at the port of the Active Block

module in the user code on the CPLD.

To receive a block transfer from the CPLD Device, a polling technique is used by the

Active Host dll. This is because the Bulk Transfer USB is a Host initiated bus. The

Device will not transfer any bytes until the Host commands it to. If the Device has data

to send to the Host in an asynchronous manner (meaning the Host did not command the

Device to send data), the Host must periodically check the Device for data in its

transmit FIFO. If data exists, the Host will command the Device to send its data. The

received data is then stored into local memory and register bits are set that will indicate

data has been received from a particular address. The receive callback function is then

called from the Active Host dll. This function start a thread to do something with the

block data.

To receive a byte transfer from the callback function, user code must subscribe to the

event created when the incoming byte transfer has arrived at the Read Callback

function. The Read Callback must store the incoming transfer payload and module

USB CPLD Development System User Manual

 Page
77

address in a local memory block. A switch statement is used to decode which event

should be called to handle the incoming received data. The event handler function will

check for any bytes read for that address.

USB CPLD Development System User Manual

 Page
78

The EventHandler function EPTParseReceive() is called by the Read Callback function.

The EPTParseReceive() function will examine the command of the incoming byte

transfer and determine which receive function to call.

For our example project, the Receive_Block_In() function writes the Transfer block

received to a text block. The receive callback method is complex, however, Earth

People Technology has created several projects which implement callbacks. Any part of

these sample projects can copied and pasted into a user’s project.

6 Assembling, Building, and Executing a .NET Project on
the PC

The Active Host Application DLL is used to build a custom standalone executable on

the PC that can perform Triggers and Transfer data to/from the EPT-570-AP. A

standalone project can be range from a simple program to display and send data from

the user to/from the Arduino Uno. Or it can more complex to include receiving data,

processing it, and start or end a process on the Arduino. This section will outline the

procedures to take an example project and Assemble it, Build it, and Execute it.

This guide will focus on writing a Windows Forms application using the C# language

for the Microsoft Visual Studio with .NET Framework. This is due to the idea that

beginners can write effective Windows applications with the C# .NET Framework.

They can focus on a subset of the language which is very similar to the C language.

Anything that deviates from the subset of the C language, presented as in the Arduino

USB CPLD Development System User Manual

 Page
79

implication (such as events and controls), will be explained as the explanation

progresses. Any language can be used with the Active Host Application DLL.

6.1 Creating a Project
Once the application is installed, open it up. Click on File->New Project.

At the New Project window, select the Windows Forms Application. Then, at the

Name: box, type in EPT_Transfer_Test

The project creation is complete.

USB CPLD Development System User Manual

 Page
80

Save the project, go to File->Save as, browse to a folder to create EPT_Transfer_Test

folder. The default location is c:\Users\<Users Name>\documents\visual studio

2010\Projects.

6.1.1 Setting up the C# Express Environment x64 bit

The project environment must be set up correctly in order to produce an application that

runs correctly on the target platform. If your system supports 64 bit operation, perform

the following steps. Otherwise if your system is 32 bit skip to the Section, Assembling

Files into the Project. Visual C# Express defaults to 32 bit operation. If you are unsure

if your system supports, you can check it by going to Start->Control Panel->System and

Security->System

USB CPLD Development System User Manual

 Page
81

Click on System.

Check under System\System type:

USB CPLD Development System User Manual

 Page
82

First, we need tell C# Express to produce 64 bit code if we are running on a x64

platform. Go to Tools->Settings and select Expert Settings

Go to Tools->Options, locate the “Show all settings” check box. Check the box.

USB CPLD Development System User Manual

 Page
83

In the window on the left, go to “Projects and Solutions”. Locate the “Show advanced

build configurations” check box. Check the box.

Go to Build->Configuration Manager.

USB CPLD Development System User Manual

 Page
84

In the Configuration Manager window, locate the “Active solution platform:” label,

select “New” from the drop down box.

In the New Solution Platform window, click on the drop down box under “Type or

select the new platform:”. Select “x64”.

USB CPLD Development System User Manual

 Page
85

Click the Ok button. Verify that the “Active Solution Platform” and the “Platform” tab

are both showing “x64”.

Also, select “Release” under “Active solution configuration”. Click Close.

Then, using the Solution Explorer, you can right click on the project, select Properties

and click on the Build tab on the right of the properties window.

USB CPLD Development System User Manual

 Page
86

Verify that the “Platform:” label has “Active (x64)” selected from the drop down box.

Next, unsafe code needs to be allowed so that C# can be passed pointer values from the

Active Host. Click on the Build tab and locate the “Allow unsafe code” check box.

Check the box

USB CPLD Development System User Manual

 Page
87

Click on the Save All button on the tool bar. The project environment is now setup and

ready for the project files. Close the Project.

6.2 Assembling Files into the Project
Locate the EPT USB-CPLD Development System CD installed on your PC. Browse to

the EPT_Transfer_Test folder where the Project files reside (choose either the 32 bit or

64 bit version, depending on whether your OS is 32 or 64 bit), copy the*.cs files, and

install them in the top level folder of your EPT_Transfer_Test project.

6.2.1 Changing Project Name

NOTE

USB CPLD Development System User Manual

 Page
88

If you named your project something other than EPT_Transfer_Test, you will have to

make changes to the *.cs files above. This is because Visual C# Express links the

project files and program files together. These chages can be made by modifying the

following:

1. Change namespace of Form1.cs to new project name.

2. Change class of Form1.cs to new project name.

3. Change constructor of Form1.cs to new project name.

4. Change EPT_Transfer_Test_Load of Form1.cs to new <project name>_Load

5. Change namespace of Form1.Designer.cs to new project name.

6. Change clase of Form1.Designer.cs to new project name.

USB CPLD Development System User Manual

 Page
89

7. Change the this.Name and this.Text in Form1Designer.cs to new project name.

8. Change this.Load in Form1Designer.cs to include new project name.

9. Change namespace in Program.cs to new project name

10. Change Application.Run() in Program .cs to new projectname.

6.2.2 Add Files to Project

Open the EPT_Transfer_Test project. Right click on the project in the Solutions

Explorer. Select Add->Existing Item.

USB CPLD Development System User Manual

 Page
90

Browse to the EPT_Transfer_Test project folder and select the active_transfer_xx.cs

file (choose either the 32 bit or 64 bit version, depending on whether your OS is 32 or

64 bit). Click Add.

In the C# Express Solution Explorer, you should be able to browse the files by clicking

on them. There should be no errors noted in the Error List box.

USB CPLD Development System User Manual

 Page
91

6.2.3 Adding Controls to the Project

Although, the C# language is very similar to C Code, there are a few major differences.

The first is C# .NET environment is event based. A second is C# utilizes classes. This

guide will keep the details of these items hidden to keep things simple. However, a brief

introduction to events and classes will allow the beginner to create effective programs.

Event based programming means the software responds to events created by the user, a

timer event, external events such as serial communication into PC, internal events such

as the OS, or other events. The events we are concerned with for our example program

are user events and the timer event. The user events occur when the user clicks on a

button on the Windows Form or selects a radio button. We will add a button to our

example program to show how the button adds an event to the Windows Form and a

function that gets executed when the event occurs.

The easiest way to add a button to a form is to double click the Form1.cs in the Solution

Explorer. Click on the button to launch the Toolbox.

USB CPLD Development System User Manual

 Page
92

Locate the button on the Toolbox, grab and drag the button onto the Form1.cs [Design]

and drop it near the top.

USB CPLD Development System User Manual

 Page
93

Go to the Properties box and locate the (Name) cell. Change the name to

“btnOpenDevice”. Locate the Text cell, and change the name to Open.

USB CPLD Development System User Manual

 Page
94

Double click on the Open button. The C# Explorer will automatically switch to the

Form1.cs code view. The callback function will be inserted with the name of the button

along with “_click” appended to it. The parameter list includes (object sender,

System.EventArgs e). These two additions are required for the callback function to

initiate when the “click” event occurs.

Private void btnOpenDevice_click(object sender, System.EventArgs e)

There is one more addition to the project files. Double click on the Form1.Designer.cs

file in the Solution Explorer. Locate the following section of code.

This code sets up the button, size, placement, and text. It also declares the

“System.EventHandler()”. This statement sets the click method (which is a member of

USB CPLD Development System User Manual

 Page
95

the button class) of the btnOpenDevice button to call the EventHandler –

btnOpenDevice_Click. This is where the magic of the button click event happens.

When btnOpenDevice_Click is called, it calls the function “OpenDevice()”. This

function is defined in the dll and will connect to the device selected in the combo box.

This is a quick view of how to create, add files, and add controls to a C# project. The

user is encouraged to spend some time reviewing the online tutorial at

http://www.homeandlearn.co.uk/csharp/csharp.html to become intimately familiar with

Visual C# .NET programming. In the meantime, follow the examples from the Earth

People Technology to perform some simple reads and writes to the EPT USB-CPLD

Development System.

6.2.4 Adding the DLL’s to the Project

Locate the EPT USB-CPLD Development System CD installed on your PC. Browse to

the Projects_ActiveHost folder (choose either the 32 bit or 64 bit version, depending on

whether your OS is 32 or 64 bit). Open the Bin folder, copy the following files:

 ActiveHostXX.dll

 ftd2xxXX.dll

and install them in the bin\x64\x64 folder of your EPT_Transfer_Test project.

http://www.homeandlearn.co.uk/csharp/csharp.html

USB CPLD Development System User Manual

 Page
96

Save the project.

6.2.5 Building the Project

Building the EPT_Transfer_Test project will compile the code in the project and

produce an executable file. To build the project, go to Debug->Build Solution.

The C# Express compiler will start the building process. If there are no errors with code

syntax, function usage, or linking, then the environment responds with “Build

Succeeded”.

USB CPLD Development System User Manual

 Page
97

6.2.6 Testing the Project

Once the project has been successfully built, it produces an *.exe file. The file will be

saved in the Release or Debug folders.

The EPT_Transfer_Text.exe file can now be tested using the EPT-570-AP-U2 board.

To test the file, connect the EPT-570-AP-U2 to the Windows PC using Type A to Type

Mini B USB cable. Make sure the driver for the board loads. If the USB driver fails to

load, the Windows OS will indicate that no driver was loaded for the device. Go to the

folder where the EPT_Transfer_Text.exe file resides, and double click on the file. The

application should load with a Windows form.

USB CPLD Development System User Manual

 Page
98

 With the application loaded, select the USB-CPLD board from the dropdown combo

box and click on the “Open” button.

USB CPLD Development System User Manual

 Page
99

Click on one of the LED buttons in the middle of the window. The corresponding LED

on the EPT-570-AP-U2 board should light up.

To exercise the Single Byte Transfer EndTerm, click the “LoopBack” button in the

Transfer Controls group. Type in several numbers separated by a space and less 256

into the Multiple Byte textbox. Then hit the Multi Byte button. The numbers appear in

the Receive Byte textbox.

USB CPLD Development System User Manual

 Page
100

To exercise the Block Transfer EndTerm, click the “Block8” or “Block16” button in the

Block Controls group. A pre-selected group of numbers appear in the Block Receive

textbox.

USB CPLD Development System User Manual

 Page
101

Press the PCB switches on the EPT-570-AP to view the Switch Controls in action.

7 The Development Process
There is no standard for developing embedded electronics. The best method is the one

that works for the user. These methods can range from a top down approach where the

design is written down first and all code is written, then compile, execute and test. Or a

bottom up approach can be pursued where a small piece of the project is assembled and

verified (i.e. I2C communication to a sensor). Then the next piece is assembled and

verified (i.e. collect sensor data in a storage buffer) and connected to the first. And so

on, until the whole design is complete. Or, you could use any combination of these two

extremes.

7.1 Designing a Simple Data Collection Sampler
The Data Collection Sampler is a very simple introductory project that will guide the

user in the creation of an overall design using the Arduino Programming Language,

Verilog HDL, and C# Language. These elements will run on the Arduino Platform,

EPT-570-AP-U2 CPLD, and a Windows 7 PC respectively.

USB CPLD Development System User Manual

 Page
102

The first order of business is to layout the design. Start with the Arduino, and create a

simple bit output using a random number generator. Next, use the EPT Active Transfer

Library to create a byte transfer module to read the byte from the Arduino and send it to

the Host PC. Finally, use EPT Active Host to accept the byte transfer from EPT Active

Transfer, and display in a textbox. This is just the hierarchical system level design. In

the following sections, we will fill in the above blocks.

7.1.1 The Arduino Microcontroller Board

 Using the features and capabilities of the Arduino development system, the user

will develop the source code using the “Wiring” programming language and download

the resulting binary code from the Processing development environment to the Flash

memory of the microcontroller.

7.1.2 Create Data Generator

To keep the design simple, no external data source will be used. We will create a data

source using the Arduino, then transmit this data to the EPT-570-AP board. To create

the data source, we will use the random() function. This function generates pseudo

random numbers from a seed value. We will give the randomSeed() function a fairly

random input using the value from the analogRead(). This will give different values

every time the random() function is called. We will limit the random number output

from the function to 8 bits. The random() function will be called once per iteration of

the loop() function.

USB CPLD Development System User Manual

 Page
103

The randomSeed() function must be called during the setup() function. It takes as input

parameter the output of the Analog Pin 1. The output of this Pin 1 will have a small

amount of random noise on it. Because of this noise, the randomSeed() function will

produce a different seed every time the sketch is initialized.

7.1.3 Select I/O’s for Fast Throughput on Arduino

An 8 bit port is used to connect the 8 bit byte from the random function output to the

input of the EPT-570-AP. There is also a one bit control line which will be used to

inform the CPLD that a byte is ready to be written to the USB.

Each port is controlled by three registers, which are also defined variables in the

Arduino language. The DDR register, determines whether the pin is an INPUT or

OUTPUT. The PORT register controls whether the pin is HIGH or LOW, and the PIN

register reads the state of INPUT pins set to input with pinMode(). The maps of the

ATmega328 chips show the ports.

DDR and PORT registers may be both written to, and read. PIN registers correspond to

the state of inputs and may only be read.

PORTD maps to Arduino digital pins 0 to 7

DDRD - The Port D Data Direction Register - read/write

PORTD - The Port D Data Register - read/write

PIND - The Port D Input Pins Register - read only

USB CPLD Development System User Manual

 Page
104

The ports and pins for the Data Collection Sampler project must be initialized in the

setup() function. The setup function will only run once, after each powerup or reset of

the Arduino board.

After the setup() function executes, the PORTD is ready to be assigned the results of

our random() function. And the A0 pin will be used to latch the value on PORTD pins

into the CPLD.

7.1.4 Coding the Arduino Data Sampler

Now that we have the data generator and the ports defined, we can add some delays in

the loop() function and make a simulated data collector. Because Start and Stop buttons

will be added to the C# Windows Form, the Data Collector code will need to monitor a

single pin output from the EPT-570-AP. This output pin (from the EPT-570-AP)

becomes an input to the Arduino and is used in conditional switch.

This code will sample the Start/Stop switch which is an output from the EPT-570-AP on

J10 PIN 1. On the Arduino, this is PIN 8 of the Digital pins. Each iteration of the loop()

function, the startStopBit variable stores the state of DigitalPin8. Then, a delay of 500

milliseconds is added. The delay() function pauses the program for the amount of time

(in milliseconds) specified as parameter. Next, the startStopBit is checked with a

conditional switch. If the bit is set, the conditional branch is entered and the random

number is sent to the EPT-570-AP. If the bit is not set, the end of the loop() function is

reached and it branches to the top of the loop().

USB CPLD Development System User Manual

 Page
105

We will also add an LED Pin that will blink so that we can have a visual indication that

the project is working.

We want to add a delay so that the data from the generated displays on the Windows PC

long enough for our eyes to verify that the data is updating correctly. This delay should

be one second in total. So, the data will change then stay stable in the textbox for one

second before changing again.

For the LED to blink correctly, it should turn on, delay for half a second then turn off

and delay for half a second. If we don’t use half second intervals for the LED blink, the

LED will appear to not change at all. It will look like it stays on all the time or off all

the time.

So, the code looks like this:

USB CPLD Development System User Manual

 Page
106

USB CPLD Development System User Manual

 Page
107

Notice that PORTD equals the return of random(255). The parameter passed to the

random() function is the maximum decimal value of the return value. In our case we

want the maximum value to be an 8 bit value, B11111111 = 0xff = 255(decimal). Also,

note that the A0 write enable signal for the CPLD has back to back instructions turning

it on then off immediately. Because the ATMega328 chip takes approximately 160

clock cycles to execute the digitalWrite() function and affect the Pin at A0, this

produces a write enable pulse of 10 microseconds.

RANDOM VALUERANDOM VALUE

A0 (WRITE ENABLE)

PORTD

10 us

The RANDOM VALUE will be stable before the A0(WRITE ENABLE) asserts thus

guaranteeing a successful transfer of data from Arduino to CPLD.

7.1.5 Building Arduino Project

Building the Arduino project is the process of converting (compiling) the code you just

wrote into machine level code that the processor can understand. The Arduino IDE is

the software tool that does the compiling. The machine level code is a set of basic

instructions that the processor uses to perform the functions the user code. Browse to

the \Projects_Arduino\Arduino_Data_Collector_Code\ folder of the EPT USB-CPLD

Development System CD. Copy Arduino_Data_Collector_Code_U2.ino .

To compile your code,

 Open up the Arduino IDE

USB CPLD Development System User Manual

 Page
108

 Load your code into the Sketch.

USB CPLD Development System User Manual

 Page
109

 Click the Verify button

 The sketch will compile

USB CPLD Development System User Manual

 Page
110

 If there are no errors, the compiling will complete successfully

Now we are done with compiling and ready to program the Arduino

7.1.6 Programming the Arduino

Programming the Arduino is the process of downloading the user’s compiled code into

the Flash memory of the Atmel ATMega328 chip. Once the code is downloaded, the

Arduino IDE resets the chip and the processor starts executing out of Flash memory.

To program the Arduino

 Connect the USB cable from PC to Arduino

 Load the Arduino USB driver according to the manual

 Plug in your board and wait for Windows to begin it's driver installation
process. After a few moments, the process will fail, despite its best efforts

 Click on the Start Menu, and open up the Control Panel.

 While in the Control Panel, navigate to System and Security. Next, click on
System. Once the System window is up, open the Device Manager.

 Look under Ports (COM & LPT). You should see an open port named "Arduino
UNO (COMxx)"

 Right click on the "Arduino UNO (COmxx)" port and choose the "Update Driver
Software" option.

 Next, choose the "Browse my computer for Driver software" option.

USB CPLD Development System User Manual

 Page
111

 Finally, navigate to and select the Uno's driver file, named
"ArduinoUNO.inf", located in the "Drivers" folder of the Arduino Software
download (not the "FTDI USB Drivers" sub-directory).

 Windows will finish up the driver installation from there.

 Once the driver is loaded, we can set the COM Port. Click on Tools and select

Serial Port, then click the available port.

USB CPLD Development System User Manual

 Page
112

 To load the code, click on the Upload button.

When the code has completed loading, the Arduino IDE will automatically command

the processor to start executing the code. The L LED will blink at one second intervals.

7.1.7 CPLD Active Transfer EndTerm Coding and Initiation

The EPT-570-AP will accept the data collected by the Arduino and transfer it to the PC.

It is designed to plug directly into the Arduino Uno and there is no need for external

wires to be added. The Active Transfer EndTerms are used to connect the Active

Transfer Library to the user code. This makes it easy to transfer data to and from the PC

via the USB. The user needs to create a state machine to control the transfer between

the incoming data and the Active Transfer EndTerms. We will now go through exercise

of creating the CPLD code for the Data Collector Sampler.

USB CPLD Development System User Manual

 Page
113

7.1.8 CPLD: Define the User Design.

In this step we will define the user’s code and include EndTerms and the EPT Active

Transfer Library. The Active Transfer Library contains a set of files with a “.vqm”

name extension which select particular operations to perform (e.g., byte transfer, block

transfer, trigger).. The active_transfer_library.vqm file must be included in the top level

file of the project. The EndTerms will connect to the active_transfer_library and

provide a path to connect user code to the library. All of these files are available on the

Earth People Technology Project CD.

ACTIVE TRANSFER
LIBRARY

TRIGGER ENDTERM

SINGLE TRANSFER
ENDTERM

BLOCK ENDTERM

USER CODE

We will build our CPLD project using Quartus II software from Altera. The primary file

defining the user’s CPLD project is named “EPT_570_AP_U2_Top.v”. It defines the

user code and connects the active_transfer_library and active_transfer logic functions.

In order to route the pins of the Arduino to the CPLD, the Pin Planner tool is used. This

tool allows the user to match internal net names to the pins of the CPLD.

Our project needs to accept an 8 bit value on the J8 connector and a write enable on Pin

1 of J9. For this, we can use the active_transfer.vqm module as the interface to the

active_transfer_library. It accepts a single byte and latches it with a single enable net.

Because the active_transfer_library runs at 66 MHz we will need to write some code

ensure that the slower A0 (write enable) signal from the Arduino can latch the data into

the active_transfer module.

USB CPLD Development System User Manual

 Page
114

CPLD: Coding up the DesignThe first thing to do is to create a top level file for the

project. The top level file will include the input and outputs for the CPLD. These are

declared according to the Verilog syntax rules. We won’t go through all the rules of

Verilog here, but feel free to explore the language more thoroughly at

www.asic-world.com/verilog/

We need to add the inputs and outputs for active_transfer_library, user code, leds, and

switches. Each port is described as input, output or inout. It is followed by the net type

wire or reg. If it is a vector, the array description must be added.

http://www.asic-world.com/verilog
http://www.asic-world.com/verilog

USB CPLD Development System User Manual

 Page
115

Next, the parameter’s are defined. These are used as constants in the user code.

USB CPLD Development System User Manual

 Page
116

Next is the Internal Signal and Register Declarations.

USB CPLD Development System User Manual

 Page
117

USB CPLD Development System User Manual

 Page
118

Next, add the assignments. These assignments will set the direction of the bus

transceivers that interface to the Arduino I/O’s. The transceivers also include an output

enable bit.

The reset signal is generated by a counter that starts counting upon power up. When the

counter reaches GLOBAL_RESET_COUNT.

USB CPLD Development System User Manual

 Page
119

The four LED’s are set by the bottom four bits of the active_trigger output register.

These trigger outputs can be set by using a function in the Active_Host DLL on the PC.

The Data Collector project will use LED3 to indicate the state of the Start/Stop signal.

USB CPLD Development System User Manual

 Page
120

The two user switches are connected to the input trigger register. Pressing a switch will

send a trigger to the PC to be decoded by the Active_Host DLL.

USB CPLD Development System User Manual

 Page
121

Next, we will add the transfer detection signal from the Arduino. This block will require

three registers.

 transfer_write_reg –This is a latch register to hold the state of the A0(Write

Enable)

 transfer_write –This register is used to start the active_transfer single byte write

to the PC.

 transfer_write_byte –This is an 8 bit register to hold the value of the Data

Collection output.

This block will compare the input signal on TRIGGER_IN_LOW[1] to a high. The

TRIGGER_IN_LOW[1] pin is routed to Pin 1 of J9 which is routed to the A0(Write

Enable) of the Arduino Data Collector. When this bit goes high, the priority encoder

goes into statement 1 and sets transfer_write_reg and transfer_write high and latches the

value on the LB_UPPER[7:0] pins to the transfer_write_byte register. By setting

transfer_write_reg high, the priority encoder goes into statement 2 which will set

transfer_write register to low and stay in statement 2 of the priority encoder. The back

to back high and low on the transfer_write register will cause the active_transfer

module to latch the value of transfer_write_byte into the active_transfer_library module

and sets up the byte transfer to the PC. When the TRIGGER_IN_LOW[1] -A0(Write

Enable) pin goes low, the encoder will reset transfer_write_reg and transfer_write to

USB CPLD Development System User Manual

 Page
122

low. The encoder goes back to waiting for the TRIGGER_IN_LOW[1] -A0(Write

Enable) to assert high.

This block of code takes care of reading the random word from the Arduino using the

A0(Write Enable) Pin. However, because the Arduino is expecting a Start/Stop bit on

Digital Pin8, the CPLD code has to provide this bit. This presents a problem, the EPT-

570-AP has 3 eight bit bi-directional ports. Which means each port is has a direction

which is either input or ouput at a given time. However, the ports can be switched

between input and output at any time. Two of the three ports must be used as inputs into

the CPLD for the random word and the A0(Write Enable) Pin. So, the third port can be

used as the output port.

USB CPLD Development System User Manual

 Page
123

XIOH

AD

XIOL

START-STOP SIGNAL

This, however, causes another problem! The Arduino XIOH connector needs to output

the Amber LED state. So, if one pin on the connector needs to be an output, the EPT-

570-AP port on J10 (XIOH) cannot be an output! This would interfere with the turning

on and turning off of the LED.

USB CPLD Development System User Manual

 Page
124

EPT-570-AP NEEDS TO OUTPUT START-
STOP SIGNAL TO THE ARDUINO

EPT-570-AP
ARDUINO

So, we can fix this problem by noting that the 8 bit bi-directional ports on the EPT-570-

AP have Output Enables that allow the CPLD to “float” the signals of the port at any

time. By floating the port, we can multiplex the signals of the port. When we need to

drive the signals from the EPT-570-AP port to the Arduino, we turn on the Output

Enables of the port. And when we need to let the Arduino drive its signals, we turn off

the Output Enables of the port.

USB CPLD Development System User Manual

 Page
125

In the reset section of the synchronous block, we turn the Direction bit to “B to A”

TR_DIR_1 <= 1‘b0;

and the Output Enable on.

TR_OE_1 <= 1’b0; (Output Enables are asserted with a zero)

The start_stop_cntrl signal is set by using the TRANSFER_CONTROL state machine

in the following section. So, if the start_stop_cntrl signal is set, the Output Enable is

turned on and the signal will appear on DigitalPin8 on the Arduino XIOH connector. As

the Data Collector code cycles through its loop() function, it will cause the if statement

to branch into its conditional statement. The Data Collector code will assert the

A0(Write Enable) Pin in its conditional statement. The A0(Write Enable) Pin will cause

the CPLD code to enter into its first conditional statement. This first statement turns off

the Output Enables of the Port J10. With the Port turned off, the Arduino can set the

LED on when it executes its code. When the A0(Write Enable) Pin is de-asserted, the

Output Enable of Port J10 is turned back on and the whole process can start over.

Next, we add a TRANSFER_CONTROL state machine to read the Control Register

from the Host PC using the active_transfer EndTerm. This state machine will decode

the 8 bit control register only after a sequence of three 8 bit bytes in the order of 0x5a,

0xc3, 0x7e. The operation of the state machine is as follows.

 The TRANSFER_CONTROL state machine will stay in the idle state of the

parallel encoder until a byte from the active_transfer transfer_to_device register

receives a 0x5a.

 This will cause the transfer_control_state to be changed to

TRANSFER_CONTROL_HDR1.

 The state machine will stay in the TRANSFER_CONTROL_HDR1 state until

the next byte is read from the active_transfer.

USB CPLD Development System User Manual

 Page
126

 If the byte from transfer_to_device is a 0xc3, the transfer_control_state will be

changed to TRANSFER_CONTROL_HDR2.

 If the byte from transfer_to_device is not a 0xc3, the transfer_control_state will

go back to idle.

 In the TRANSFER_CONTROL_HDR2 state , the state machine will stay in this

state until the next byte from the active_transfer is received.

 If the byte from transfer_to_device is a 0x7e, the transfer_control_state will be

changed to TRANSFER_DECODE_BYTE.

 If the byte from transfer_to_device is not a 0x7e, the transfer_control_state will

go back to idle.

 In the TRANSFER_DECODE_BYTE state , the state machine will stay in this

state until the next byte from the active_transfer.

 The next byte transferred from active_transfer will be decoded as the Control

Register.

The bits of the Control Register are defined below.

Register Bits Description Assertion

Control 0 Start Stop Cntrl High

1 Not Used

2 LED Reset High

3 Switch Reset High

4 Transfer In Loop Back High

5 Not Used

6 Not Used

7 Not Used

7 Not Used

USB CPLD Development System User Manual

 Page
127

USB CPLD Development System User Manual

 Page
128

Next, up is the instantiation for the active_transfer_library. The ports include the input

and output pins and the two buses that connect the active modules. These buses are the

input UC_IN[23:0] and output UC_OUT[21:0].

USB CPLD Development System User Manual

 Page
129

Finally, we instantiate the Active EndTerms. For the Data Collection project, we only

need active_transfer and active_trigger EndTerms. The uc_out port for both modules

must be shared. Since they both drive this bus, a bus wide wired-or circuit is used so

that they don’t drive each other. The active_transfer EndTerm has a port for the address

(uc_addr). This allows the PC to address up to 8 different modules. Just add a three bit

address to this port and the PC must add this same address to communicate with this

module.

USB CPLD Development System User Manual

 Page
130

Next, we are ready to compile and synthesize.

7.1.9 CPLD: Compile/Synthesize the Project

The Quartus II application will compile/ synthesize the user code,

active_transfer_library, and the active EndTerms. The result of this step is a file

containing the CPLD code with “*.pof”. First, we need to create a project in the

Quartus II environment. Follow the directions in the section: “Compiling, Synthesizing,

and Programming CPLD”.

USB CPLD Development System User Manual

 Page
131

Bring up Quartus II, then use Windows Explorer to browse to

c:/altera/xxx/quartus/qdesigns create a new directory called: “EPT_Data_Collector”.

Open Quartus II by clicking on the icon .

 Under Quartus, Select File->New Project Wizard. The Wizard will walk you through

setting up files and directories for your project.

At the Top-Level Entity page, browse to the

c:\altera\xxx\quartus\qdesigns\EPT_Data_Collector directory to store your project.

Type in a name for your project “EPT_570_AP_U2_Top”.

Follow the steps up to Add Files. At the Add Files box, click on the Browse button and

navigate to the project Data Collector install folder in the dialog box. Browse to the

\Projects_HDL\EPT_Data_Collector \EPT_570_AP_U2_Top folder of the EPT USB-

CPLD Development System CD. Copy the files from the \src directory.

 Active_transfer.vqm

 Active_trigger.vqm

 Active_transfer_library.vqm

USB CPLD Development System User Manual

 Page
132

 eptWireOr.v

 ETP_570_AP_U2_Top.v

Add the files:

Continue following the instructions by adding a device and finishing the project

instantiation. Then, add the Pins.

 Under Assignments, Select Import Assignments.

 At the Import Assignment dialog box, browse to the

\Projects_HDL\EPT_Data_Collector \EPT_570_AP_U2_Top folder of the EPT

USB-CPLD Development System CD. Select the Quartus Specification file,

“EPT_570_AP_U2_Top.qsf” .

 Click Ok. Under Assignments, Select Pin Planner. Verify the pins have been

imported correctly.

Next, we need to add the Synopsys Design Constraint file. This file contains timing

constraints which forces the built in tool called TimeQuest Timing Analyzer to analyze

the path of the synthesized HDL code with setup and hold times of the internal registers.

USB CPLD Development System User Manual

 Page
133

It takes note of any path that may be too long to appropriately meet the timing

qualifications. For more information on TimeQuest Timing Analyzer, see

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf?GSA_pos=1&WT.oss_r=1&

WT.oss=TimeQuest Timing Analyzer

Browse to the \Projects_HDL\EPT_Data_Collector \Altera_EPM570_U2 folder of the

EPT USB-CPLD Development System CD. Select the “EPT_570_AP_U2_Top.sdc”

file.

Copy the file and browse to c:\altera\xxx\quartus\qdesigns\EPT_Data_Collector

directory. Paste the file.

and select the Start Compilation button.

USB CPLD Development System User Manual

 Page
134

This will cause the compile and synthesization process. After successful completion, the

screen should look like the following:

If the synthesis fails, you will see the failure message in the message window. Note that

in addition to fatal errors, the compile process can produce “warnings” which do not

necessarily prevent execution of the code but which should be corrected eventually.

At this point the project has been successfully compiled, synthesized and a

programming file has been produced. See the next section on how to program the

CPLD.

7.1.10 CPLD: Program the CPLD

The final step is programming the “*.pof” file into the CPLD. Follow the section:

“Programming the CPLD”.

USB CPLD Development System User Manual

 Page
135

 Connect the EPT-570-AP to the PC,

 Open up Quartus II,

 Open the programmer tool

 In the upper left corner of the Programmer Tool, there is a button labeled

“Hardware Setup”. Verify that EPT-Blaster v1.3” has been selected. If not,

go to the section JTAG DLL Insert to Quartus II and follow the directions.

 Check the box under Program/Configure

 Click the Start button.

When the programming is complete, the Progress bar will indicate success.

At this point, the EPT-570-AP is programmed and ready for use.

7.1.11 PC: Design the Project

The final piece of the Data Collection Sampler is the PC application. This application

will fetch the data from the CPLD of the EPT-570-AP and display it on the screen. It

includes user code, windows form, and the Active_Host DLL.

USB CPLD Development System User Manual

 Page
136

The Active_Host DLL is designed to transfer data from the CPLD when it becomes

available. The data will be stored into local memory of the PC, and an event will be

triggered to inform the user code that data is available from the addressed module of the

CPLD. This method, from the user code on the PC, makes the data transfer transparent.

The data just appears in memory and the user code will direct the data to a textbox on

the Windows Form.

The Data Collector project will perform the following functions.

 Find EPT-570-AP Device.

 Open EPT-570-AP Device.

 Start the Arduino data collection process.

 Wait for data from EPT-570-AP.

 Display data from EPT-570-AP in textbox.

7.1.12 PC: Coding the Project

The user code is based on the .NET Framework and written in C#. The language is great

for beginners as it is a subset of the C++ language. It has the look and feel of the

familiar C language but adds the ease of use of classes, inheritance and method

overloading. C# is an event based language which changes the method of writing code

for this project. See the section “Assembling, Building, and Executing a .NET Project

on the PC” for a better description of event based language programming.

To start the project, follow the section “Assembling, Building, and Executing a .NET

Project on the PC”. Use the wizard to create project called “Data_Collector”. When the

wizard completes, the C# Express main window will look like the following.

USB CPLD Development System User Manual

 Page
137

These statements setup the namespace and the class for the project. There are several

other files that are created by the wizard such as Form1.Designer.cs, Program.cs,

Form1.resx. We don’t need to go into these support files, we will just focus on the

Form1.cs as this is where all the user code goes.

The project environment must be set up correctly in order to produce an application that

runs correctly on the target platform. Visual C# Express defaults new projects to 32 bits.

If you OS is a 64 bit platform, use the following directions to set up a 64 bit project.

First, we need tell C# Express to produce 64 bit code if we are running on a x64

platform. Go to Tools->Settings and select Expert Settings

Go to Tools->Options, locate the “Show all settings” check box. Check the box.

USB CPLD Development System User Manual

 Page
138

In the window on the left, go to “Projects and Solutions”. Locate the “Show advanced

build configurations” check box. Check the box.

Go to Build->Configuration Manager.

USB CPLD Development System User Manual

 Page
139

In the Configuration Manager window, locate the “Active solution platform:” label,

select “New” from the drop down box.

In the New Solution Platform window, click on the drop down box under “Type or

select the new platform:”. Select “x64”.

USB CPLD Development System User Manual

 Page
140

Click the Ok button. Verify that the “Active Solution Platform” and the “Platform” tab

are both showing “x64”.

Click Close.

Then, using the Solution Explorer, you can right click on the project, select Properties

and click on the Build tab on the right of the properties window.

USB CPLD Development System User Manual

 Page
141

Verify that the “Platform:” label has “Active (x64)” selected from the drop down box.

Next, unsafe code needs to be allowed so that C# can be passed pointer values from the

Active Host. Right click on the “Data Collector” project in the Solution Explorer. Select

Properties.

USB CPLD Development System User Manual

 Page
142

Click on the Build tab and locate the “Allow unsafe code” check box. Check the box

Now we are ready to start coding.

Next, we add two classes for our device. One class stores the information useful for our

device for Transmit to the EndTerms such as, address of module, length of transfer etc.

USB CPLD Development System User Manual

 Page
143

The next class is used to store parameters for receiving data from the device.

The first function called when the Windows Form loads up is the

Data_Collector_Load(). This function is called automatically upon the completion of

the Windows Form, so there is no need to do anything to call it. Once this function is

called, it in turn calls the ListDevices().

The ListDevices() function calls the EPT_AH_Open() function to load up the

ActiveHost Dll. Next, it calls EPT_AH_QueryDevices() which searches through the

registry files to determine the number of EPT devices attached to the PC. Next,

EPT_AH_GetDeviceName() is called inside a for loop to return the ASCII name of

each device attached to the PC. It will automatically populate the combo box,

cmbDevList with all the EPT devices it finds.

USB CPLD Development System User Manual

 Page
144

The user will select the device from the drop down combo box. This value can be sent

to the OpenDevice() function using the button Click of the Open button.

The device_index variable is used to store the index of the device selected from the

combo box. This variable is passed into the EPT_AH_OpenDeviceByIndex(). This

USB CPLD Development System User Manual

 Page
145

process is started by the user clicking on the “Open” button. If the function is

successful, the device name is displayed in the label, labelDeviceCnt. Next, the device

is made the active device and the call back function is registered using the

RegisterCallBack() function. Finally, the Open button is grayed out and the Close

button is made active.

Next, the callback function is populated. This function will be called from the Active

Host dll. When the EPT Device has transferred data to the PC, the callback function

will do something with the data and command.

USB CPLD Development System User Manual

 Page
146

Because the callback function communicates directly with the dll and must pass

pointers from the dll to the C#, marshaling must be used. Marshaling is an advanced

topic and will not be covered in this manual.

When EPTReadFunction() callback is called and passed parameters from the Active

Host dll, it populates the EPTReceiveData object. It then calls EPTParseReceive()

function. This function uses a case statement to call the TransferOutReceive() function.

TransferOut Receive() creates a string from the EPTReceiveData.Payload parameter.

Then sends the string to the textbox, tbDataBytes.

USB CPLD Development System User Manual

 Page
147

Controls such as buttons are added to the Form1.cs[Design] window which allow

turning on and off signals. These include

 btnWriteByte

 btnTransferReset

 btnOk

 btnClose

 btnResetBlock

Refer to section 1.6.4 Adding Controls to the Project for details about using the

ToolBox to place controls on a design. The btnWriteByte click event calls the

EPT_AH_SendTransferControlByte(). This function is used to turn on/off bits in the

Control Register in the CPLD code. The btnWriteByte will set the start_stop_cntrl

signal in the CPLD to one. This signal starts the Arduino Data Collector sending its

random word to the CPLD.

The btnTransferReset sets the start_stop_cntrl bit in the Control Register to zero. This

action will cause the Arduino Data Collector to stop sending the random word to the

CPLD.

The btnResetBlock button will clear the tbDataBytes textblock. The Clear() method is

inherited from the textbox class.

USB CPLD Development System User Manual

 Page
148

The btnOk and btnClose buttons are used to end the application. It calls the function

EPT_AH_CloseDeviceByIndex() to remove the device from the Active Host dll. The

buttons btnOpen and btnClose have their Enabled parameter set to true and false

respectively. The Enabled parameter controls whether the button is allowed to launch an

event or not. If it is not enabled, the button is grayed out. At the end of each click event,

the Application.Exit() method is called. This exits the form.

This is all that is needed for the Data Collector project. The Arduino will generate a

random 8 bit word. It then transmits that word to the CPLD using the A0

(WRITE_ENABLE) signal. The CPLD transmits the 8 bit word to the PC using the

ACTIVE TRANSFER module of the Active_Transfer Library. The dll reads the 8 bit

word into local memory. It then calls the Callback function, EPTReadFunction. The 8

bit is finally displayed to screen using the MessageBox.Show().

7.1.13 PC: Compiling the Active Host Application

Building the Data_Collector project will compile the code in the project and produce an

executable file. It will link all of the functions declared in the opening of the

Data_Collector Class with the Active Host dll. The project will also automatically link

the FTD2XX.dll to the object code. Follow section: Assembling, Building, and

Executing a .NET Project on the PC. Browse to the

\Projects_ActiveHost_xxBit\EPT_Data_Collector \Data_Collector\ folder of the EPT

USB-CPLD Development System CD. Copy the following files into the project.

 Active_transfer_xxx.cs

 Data_Collector.csproj

USB CPLD Development System User Manual

 Page
149

 Data_Collector.csproj.user

 Form1.cs

 Form1.Designer.cs

 Program.cs

To build the project, go to Debug->Build Solution.

The C# Express compiler will start the building process. If there are no errors with code

syntax, function usage, or linking, then the environment responds with “Build

Succeeded”.

If the build fails, you will have to examine each error in the “Error List” and fix it

accordingly. If you cannot fix the error using troubleshooting methods, post a topic in

the Earth People Technology Forum. All topics will be answered by a member of the

technical staff as soon as possible.

7.1.14 Adding the DLL’s to the Project

Locate the EPT USB-CPLD Development System CD installed on your PC. Browse to

the Projects_ActiveHost folder (choose either the 32 bit or 64 bit version, depending on

whether your OS is 32 or 64 bit). Open the Bin folder, copy the following files:

 ActiveHostXX.dll

USB CPLD Development System User Manual

 Page
150

 ftd2xxXX.dll

and install them in the bin\x64\x64 folder of your EPT_Data_Collector project.

Save the project.

At this point, the environment has produced an executable file and is ready for testing.

Next, we will connect everything together and see it collect data and display it.

7.1.15 Connecting the Project Together

Now we will connect the Arduino, EPT 570-AP-U2, and the PC to make a Data

Collector. First, connect a USB cable from a USB port on the PC to the Arduino.

Second, connect a USB cable from a open USB port on the PC to the EPT 570-AP-U2.

Next, open the Arduino IDE and select File->Open and select your sketch created

earlier, Arduino_Data_Collector_Code_U2.ino.

USB CPLD Development System User Manual

 Page
151

Select the file and click Open. The sketch will now populate the Arduino IDE window.

Compile and Download the sketch into the Arduino microcontroller using the Upload

button.

USB CPLD Development System User Manual

 Page
152

The Arduino IDE will compile the project, then transmit the machine level code into the

ATMega328 SRAM to start the program. When this is complete, the Yellow L LED

will blink about once per second.

If this LED is blinking at the rate of once per second, the Arduino and the Data

Collector project are ready for the EPT 570-AP-U2 code.

The CPLD should already be programmed with its Data Collector Project. If it isn’t,

follow the instructions in section 3.1.10.

USB CPLD Development System User Manual

 Page
153

Open the EPT Data Collector on the PC by browsing to the Data Collector project

folder. Locate the executable in the \bin\x64\Release folder.

Initiate the application by double clicking the application icon in the \Release folder of

the project. The application will open and automatically load the Active Host dll. The

application will locate the EPT 570-AP-U2 device. Next, the combo box at the top will

be populated with the name of the device.

EPT USB <-> JTAG&Serial Cable B

Select the EPT 570-AP device and click the Open button. If the Active Host application

connects to the device, a label will indicate “Device Connected”. Next, select the

address of the Active Transfer module in the CPLD. In our case it is “2”.

USB CPLD Development System User Manual

 Page
154

EPT USB <-> JTAG&Serial Cab

7.1.16 Testing the Project

To test our Data Collector project, just click on the Start button. As soon as the device

connects, the data from the Arduino will appear in the received data textBox.

EPT USB <-> JTAG&Serial Cab

And that’s all there is to the Data Collector Project. It’s up to the user to use this project

as a base to create much larger projects. You can easily make a volt meter using this

project by turning off the Random number generator in the Arduino and reading the

USB CPLD Development System User Manual

 Page
155

Analog Pins. Also, reformat the textBox display that it shows in decimal instead of the

Hexadecimal display.

8 Hyper Serial Port (HSP) Application
Communication with the CPLD code from the PC is effected through the Hyper Serial

Port which transmits to and from the CPLD via the FT245/Side B channel. Note that the

Hyper Serial Port does not download any information for storage in the CPLD memory,

but merely sends and receives signals to and from the active library modules in the

CPLD. The EPT USB-CPLD system permits up to eight separate trigger, byte transfer

and block transfer modules to be loaded in the CPLD via the Quartus II software

system.

HSP also provides a visual control and interface window with a variety of control

options available. Details are provided at the HSP website,

http://earthpeopletechnology.com/ where the software may be downloaded to a user’s

PC.

8.1 Summary of Hyper Serial Port (HSP) Capabilities
HyperSerialPort is a serial terminal emulator which has built in tools to assist

developers of embedded electronics to quickly diagnose problems associated with the

design and programming of microcontrollers. It is built on the Microsoft .NET

Framework 4.0 and designed for Windows 7, 32-bit. It has been tested also with

Windows XP. Various embedded electronics evaluation tools are included in HSP.

These are briefly described in the following sub-sections.

8.2 Embedded Scripting Evaluator
The Embedded Scripting Evaluator allows developers to run Python scripts within the

HSP environment. This will allow users to develop real time feedback loops to mimic

processor-to-device communications. The user could write a script to emulate an I2C

device and use an embedded processor to communicate with the I2C device and debug

communication errors. Caution must be used when using this mode. HSP does not put

any restrictions on using Python scripts and thus user scripts could be generated which

could damage the OS. Care must used when writing Python scripts in this mode.

HSP contains an embedded scripting evaluator which enables Python scripts to be used

to generate commands to read and write to the CPLD trigger and active transfer

modules in the CPLD. Details of the Python language are given at

http://www.python.org/. IronPython is an implementation of the Python language for

operation within the Microsoft .NET environment. Details of the IronPython

http://earthpeopletechnology.com/
http://www.python.org/

USB CPLD Development System User Manual

 Page
156

implementation are given at http://www.python.org/. Notepad++ is a useful text editor

for generating and editing the Python scripts.

8.3 Send Character Timer
The Send Character Timer Function allows the user to send a repeating character or

string at a timed sequence over the serial port. This function utilizes the high resolution

property of Windows 7 OS. This will allow the timer to reach up to 700 microseconds

between characters sent. Some caution must be exercised with timed sequences in the

Windows 7 OS. This operating system is a non-deterministic operating system. This

means it cannot guarantee the timer will expire at 700 microseconds for each sequence.

8.4 External Trigger
The External Trigger function will pause the incoming characters on a serial port until a

selected character or string appears on the selected trigger serial stream. This allows the

user to capture an event that may be difficult to see when a serial stream is continuously

updating the serial terminal window.

http://www.python.org/

USB CPLD Development System User Manual

 Page
157

APPENDIX I

List of Abbreviations and Acronyms

EPT Earth People Technology

FIFO First In – First Out

FTDI Future Technology Device International

HSP Hyper Serial Port

I2C Inter-Integrated Circuit

JTAG Joint Test Action Group

PC Personal Computer

CPLD Complex Programmable Logic Device

USB Universal Serial Bus

APPENDIX II

Details of the Altera EPM570 CPLD

