
User Manual EPT SPI Serial Graph Tool For the UNO

Page 1

EARTH PEOPLE TECHNOLOGY

SERIAL GRAPH TOOL FOR THE ARDUINO UNO

USER MANUAL

The Serial Graph Tool for the Arduino Uno provides a simple interface for graphing data to the

PC from the Uno. It can graph up to 8 separate channels. Each channel is limited to eight bits

only. It has several tools that allow the data to be scaled for examination. Scaling can be

performed in the Vertical and Horizontal. Each channel can be turned on or off for display. The

Serial Graph Tool has easy to use Arduino functions to transmit data to be graphed from the

Uno. It uses the SPI bus so data is transferred at up to 4 Megabits per second.

User Manual EPT SPI Serial Graph Tool For the UNO

Page 2

Serial Graph Tool Getting Started

Below is a list of the steps to take to get started using the Serial Graph Tool.

1. Install the Serial Graph Tool Driver

2. Install the Serial Graph Tool Application

3. Connect the EPT 220X-DB-U2 board to the Arduino Uno

4. Connect each board separately to two USB Ports on the PC

5. Locate the Arduino Examples folder under the Serial Graph Tool Install

6. Locate the Arduino_SGTool_Analog_Monitor_U2 folder, double click on the *.ino file

7. When the Arduino IDE comes up, Go to Tools->Board and select Arduino Uno

8. Go to Tools->Serial Port and select the correct port for the Uno.

9. Click on the Upload button of the Arduino IDE.

10. Click on the Serial Graph Tool Icon under ñAll Programsò

11. When the application opens up, click on the drop down box in the upper right corner.

12. Select the ñSerial Graph Tool 0ò.

13. Click on the ñOpenò button then click on the ñStartò button.

14. All six analog channels should appear on the display.

Serial Graph Tool Driver

Connect the EPT 220X-DB-U2 board to a USB port on the PC. Load the driver located on the

CD at /SPI_SERIAL_GRAPH_TOOL_PROJECT_CD/Drivers/EPT_2.08.24

The EPT 220X-DB-U2 uses the ftdibus.sys driver. This driver is loaded upon connection of the

USB to Serial Cable to the PC by the ftdibus.inf file. To install these two files onto your PC,

follow the instructions from the ñUpdate Driver Softwareò utility. This utility will automatically

User Manual EPT SPI Serial Graph Tool For the UNO

Page 3

load when the board is connected to the PC.

Click on the ñBrowse my computer for driver Softwareò icon. Next, click the ñBrowseò button

and browse over to the cd and locate the above folder.

User Manual EPT SPI Serial Graph Tool For the UNO

Page 4

The next window is the Windows Security notice. The EPT driver is not signed by

Windows. Click on the ñInstall this driver software anywayò.

User Manual EPT SPI Serial Graph Tool For the UNO

Page 5

Windows will add the EPT_2.08.24 driver to the System Registry.

When this is complete, the drivers are installed and the EPT 220X-DB-U2 is ready for use.

Serial Graph Tool Applica tion Install

The Serial Graph Tool application software must be installed onto the users PC before using.

User Manual EPT SPI Serial Graph Tool For the UNO

Page 6

This is an easy process as the application and all the supporting files such as Data Sheets,

Arduino Examples and the application itself has been packed into Windows Installer files. This

comes in the form of two files:

Just double click on the setup icon to launch the installer. Click through all of the install screens

by clicking ñNextò.

User Manual EPT SPI Serial Graph Tool For the UNO

Page 7

When the installation is complete, the application is ready for use. The installer adds a folder

under the users Programs (x86) folder. Go to Start->Serial Graph Tool to view the files and

folders.

Just click on the Serial Graph Tool icon to launch the application. The ñArduino Examplesò

folder contains example code for you to use to setup a working graph application on the Arduino.

The ñDocumentationò folder contains the Data Sheet and User Manual for the Serial Graph Tool.

Serial Graph Tool Connections

The Serial Graph Tool uses the EPT 220X-DB-U2 board to connect the Arduino Uno to the

software application running on the PC. The board is designed with stackable headers that

connect into the Uno headers. When the two boards are connected, the SPI bus from the Arduino

is connected to the USB port of the PC via the FT220X

daughter board.

Connect the EPT 220X-DB-U2 to the Arduino Uno.

Connect the board to an open USB port on the PC. The

Serial Graph Tool is designed to mate with the Arduino

Uno. The four board connectors connect directly into the

Arduino Uno. Once the two boards are connected, the SPI

signals from the Uno are directed into the UMFT220XA

module. Both the Uno and the Serial Graph Tool can be powered up at the same time. The EPT

220X-DB-U2 board receives its power from the USB cable. To use the board, connect a USB

User Manual EPT SPI Serial Graph Tool For the UNO

Page 8

Mini B cable into the board connector and an open USB port on the PC. When the board is

connected the USB driver (described in the previous section) automatically loads.

Connect the Uno to the PC using a USB Cable.

Connect the Uno to the PC using a USB Cable. Next, add some code to the Arduino and use the

Serial Graph Tool functions to plot out user data.

Serial Graph Tool Data Flow

The Serial Graph Tool is designed to graph any data. This data can be 8, 10, 12, or 16 bits. It can

have up to eight individual channels displayed at any one time. This data can be the result of the

AnalogRead() function, or Temperature from and I2C sensor, or it can be created from a

mathematic equation. Once the data has been graphed to the display, it can be scaled in the

horizontal or vertical directions. You can zoom in or out in the horizontal or move forwards or

backwards in the data buffer. In the vertical direction, you can scale the data with an integer or

fractional multiplier. You can also set the vertical position of each channel.

The figure below shows the Data Flow for graphing data from the Arduino. The user will collect

data, then format the data, transmit over SPI to the EPT 220X-DB-U2, then transmit over USB to

the PC, and finally the Serial Graph Tool displays the data.

User Manual EPT SPI Serial Graph Tool For the UNO

Page 9

The EPT Serial Graph Tool makes it easy to graph fast or slow data coming from the Arduino

Uno. The user only has to write code for the Uno. Just collect the data into an array then send the

array and channel number to the EPT 220X-DB-U2, then send the end of frame command. There

are only two functions needed to display data on the Serial Graph Tool.

1. EPT_SGToolWriteBlockData(DataArray, NumberOfBytes, ChannelNumber,

NumberOfDataBits)

2. EPT_SGToolFrameEnd()

These functions are explained in the next section. When the EPT_SGToolWriteBlockData()

function is called, it takes the block that was previously stored into DataArray and transmits the

bytes over the SPI bus to the EPT 220X-DB-U2. This data will be automatically sent from the

EPT 220X-DB-U2 to the PC. Upon arrival at the PC, the Serial Graph Tool will store the data

into a circular buffer. The circular buffer will continue to store new data as it arrives from the

EPT 220X-DB-U2. When the EPT_SGToolFrameEnd() function is called on the Arduino, it

sends a command to the Serial Graph Tool to graph the data in the circular buffer.

You can keep sending data to the Serial Graph Tool, indefinitely. Because it uses a circular

buffer, it will continue to fill this buffer. When it reaches the maximum size of the buffer, it

circles back around to the beginning of the buffer and fills the buffer at that point. So, it will

overwrite the previously written data. Anytime you want to update the display with new data,

User Manual EPT SPI Serial Graph Tool For the UNO

Page
10

just call the EPT_SGToolFrameEnd().

Serial Graph Tool Arduino Library

1. Write Block Function

EPT_SGToolWriteBlockData((int *)DataArray, (int) NumberOfWords, (int)ChannelNumber,

(int)NumberOfDataBits)

This function is used to send a block of data to the Serial Graph Tool software which resides on

the PC. The function does not return anything and takes four items as input parameters.

a. DataArray ï this is an integer array that can take up to 16 bit data. The array

should be declared as an integer array with no more than 500 entries. The Uno has

only 2KB of SRAM so the buffer should stay under that size. The array can be as

small as one byte or it can be the entire 500 integers. You must pass the

DataArray to the function EPT_SGToolWriteBlockData() as an integer pointer.

This is simple to do, just add the (int *) in front of the name of your array.

b. NumberOfWords ï this is the number of items in the DataArray that you want to

transfer to the Serial Graph Tool. Make sure that the total number of items in this

value is available in the DataArray. If a null character is read from the buffer, it

will not be transferred.

c. ChannelNumber ï this is the channel that you want to write the DataArray into in

the Serial Graph Tool. The tool has separate data buffers for each channel.

Channels are assigned 0 to 7 for a total of eight channels. When the Arduino

writes data to a new channel, it is declared and becomes available for display. If

no command is sent to write data to a particular channel, then that channel will

not be available for display.

d. NumberOfDataBits ï this value is used to determine the bit size of each data

element, 8, 10, 12, or 16. This value needs to be filled in correctly, otherwise the

data will be incorrectly organized in the buffers in Serial Graph Tool. The correct

values to use are:

User Manual EPT SPI Serial Graph Tool For the UNO

Page
11

i. EIGHT_BIT_DATA

ii. TEN_BIT_DATA

iii. TWELVE_BIT_DATA

iv. SIXTEEN_BIT_DATA

2. Frame End Function

EPT_SGToolFrameEnd()

This function should be called anytime you want to graph the data that was written into the

channel buffers in Serial Graph Tool. This function has no return and requires no parameters. It

can be called at anytime.

Serial Graph Tool Functionality

3. DataArray description

The DataArray is the place in the Arduino memory where the data to be sent to the Serial Graph

Tool is stored. This is declared as an integer array with a maximum size of 500 integers.

User Manual EPT SPI Serial Graph Tool For the UNO

Page
12

Each integer stored into this array will become a pixel in the display. The value of each integer

will become its amplitude. The position of each integer in the DataArray is the point in time in

which the data sample was collected. Each integer added to the DataArray can be either eight bit,

ten bit, twelve bit or sixteen bit. However each integer added must be the same as all the other

integers in the array. Mixing different bit sizes in the array is not allowed. So, the fact that we are

changing the bit size of the data going into the array means we are not actually adding ñintegersò

in the ANSI ñCò sense of the meaning. Integers in the Arduino are 16 bits. However, we can

store an eight bit (or ten, twelve) to the elements of the array with no problems. The

EPT_SGTool Library just needs to know what the bit size of data we store into this array. And

that is why we pass the ñNumberOfDataBitsò parameter to the EPT_SGToolWriteBlockData()

function.

4. Channel selection

The Serial Graph Tool can display up to eight individual channels of data. When the user sends a

block of data to the EPT 220X-DB0-U2, they send it to a channel. And the data that is collected

at the PC will be displayed in that channel only. So, the user must select a channel and enter in

the ñChannelNumberò in the parameters for the EPT_SGToolWriteBlockData() function. The

User Manual EPT SPI Serial Graph Tool For the UNO

Page
13

data that is continuously collected for the channel in the Arduino code must keep the same

channel number for the duration of the application. If you collect data for more than one channel,

each time you call EPT_SGToolWriteBlockData() function you will have to enter the correct

ñChannelNumberò for that data. It is up to the user to ensure the correct channel is passed to the

EPT_SGToolWriteBlockData() function. Failure to do so will cause the display to show

incorrect information.

5. Pixel bit selection

When the data in a channel is graphed in the Serial Graph Tool, each integer in the buffer

becomes a pixel on the display. The integers start at zero in the buffer and increment up to 450

while each pixel is placed on the graph from left to right. The value of all elements in the

DataArray can be either 8, 10, 12, or 16 bits. The user will determine which bit selection to use

based on the data.

6. Length of display pixels

There are 450 pixels from left to right on the display. Each division has 50 pixels in it. Each

User Manual EPT SPI Serial Graph Tool For the UNO

Page
14

pixel is a data point that is derived from the data elements in the circular buffers.

User Manual EPT SPI Serial Graph Tool For the UNO

Page
15

When the Serial Graph Tool receives a FrameEnd command it reads the previous 450 data

elements starting from the most recent data element from the selected channel in the circular

buffer. It graphs each data element in one pixel. The value of the data element determines the

amplitude of the signal.

7. Circular buffer description

The Serial Graph Tool stores the incoming channel data into separate buffers. There is one buffer

for each channel. All of these channel buffers are organized as Circular Buffers. The concept of

using a Circular Buffer is pretty straight forward:

�x Continuously store incoming data into the same buffer.

�x When reaching the end of the circular buffer, start overwriting data at index 0.

It starts filling at index zero and increments the index whenever new data arrives. When the

index reaches the maximum point, it starts filling the buffer at zero.

