
1 EPT DSO System Description

ALTERA CYCLONE IV FPGA

FT2232H
USB

INTERFACE

4CHANNEL ADC

LPF

LPF

LPF

LPF

PGA

PGA

PGA

PGA

4
 TO

 1
 M

U
LTIP

LEX
O

R

DAC

ANALOG
COMPARATOR

OSCILLOSCOPE INTERFACE BOARD

CH 1 BNC

CH 2 BNC

CH 3 BNC

CH 4 BNC

-

+

CONFIG
FLASH

COUPLING

JFET

COUPLING

JFET

COUPLING

JFET

COUPLING

JFET

CONFIG
EEPROM

3.3V
POWER REG

1.2V
POWER REG

2.5V
POWER REG

VOLTAGE
REFERENCE

10 PIN
CONNECTOR

8 PIN
CONNECTOR

6 PIN
CONNECTOR

66MHZ
OSC

100MHZ
OSC

MUX

The EPT DSO consists of a 4 analog inputs connected to PGA’s and connected to an ADC

through a four channel multiplexor. The sampling rate is controlled by the FPGA. The samples

from the output of the ADC are collected in the FPGA. They are framed into a memory buffer

and transmitted to the PC via a USB to Serial chip.

IDLE

START
ADC CONV

ENCODE
HIGH

ENCODE
LOW

UPDATE
CHANNEL

SELECT

TRANSFER
TO HOST

TRANSFER
COMPLETE

CHECK FOR
MAX

SAMPLES

FPGA ADC

ADC_ENCODE

ADC 8 BIT DATA

· START ADC CONV
· Select Channel 1
· SPI Bus Transaction
· Wait for ENCODE_HIGH
· Read ADC data
· Store Data into appropriate

spot in the memory array
· Go To CHECK FOR MAX

SAMPLES
· Check Number of Samples
· If less than

MAX_SAMPLE_COUNT, Go To
UPDATE CHANNEL SELECT

· Check Which Samples are
Active, Switch to Next Channel

· Go To ENCODE HIGH
· Repeat Storing ADC Samples
· When Max Samples has been

reached, Go To TRANSFER TO
HOST

· Start Block Transfer From
Memory Array to USB Bus

· Increment Counter and
Compare Number of Bytes to
Transfer, if Number of Bytes
exceed Memory Array
elements, Go To TRANSFER
COMPLETE

· End the Block Transfer and
reset all counters and
Registers.

· Increment the ADC_Sample
register and check whether to
issue another Start_ADC_Conv
command.

ADC Converts Analog Signal
On Each Rising Edge of

ADC_ENCODE

PGA

SPI BUS

If(adc_convst_cmd)

If(encode_high_reg)

If(encode_low_reg)

If(mem_array_storage_index > MAX_SAMPLES)

If((adc_channel_select_state == 2'b11) & !spi_transmit_word_enable)

If(mem_array_index >= MAX_SAMPLES)

If(!serial_receive_start_transfer_reg)

ADC_ENCODE

· state[ENCODE_HIGH]

· Read ADC
· Put Data into

mem_array at
mem_array_index = 1

· Casex(selected_channel)
· 4'bxxx1:

· Spi_transmit selected_channel[0]
· Selected_channel[0] = 0

· 4'bxx1x:
· Spi_transmit selected_channel[1]
· Selected_channel[1] = 0

· 4'bx1xx:
· Spi_transmit selected_channel[2]
· Selected_channel[2] = 0

· 4'b1xxx:
· Spi_transmit selected_channel[3]
· Selected_channel[3] = 0

· if(selected_channel == 4'b0000)
· selected_channel = {adc_channel_4,,,adc_channel_1}

· Starts over with new
values for
mem_array_index
and selected_channel

· state[UPDATE CH SELECT]

· If(mem_array_index > MAX_SAMPLES)
· Go to state[TRANSFER TO HOST]

· state[ENCODE_LOW]

· state[CHECK FOR MAX SAMPLES]

· mem_array_index = mem_array_index + 1

2'b00

2'b01

2'b10

2'b11

adc_channel_select_state

if(spi_transmit_word_enable)

if(!spi_transmit_word_enable)

if(!spi_transmit_word_enable)

if(spi_transmit_word_enable)

· Channel_selected_transmit_register =
PGA_WRITE_CMD

· Channel_selected_spi_transmit_start = 1

· Channel_selected_spi_transmit_start = 0

· Channel_selected_spi_transmit_start = 0

ADC SAMPLE STORAGE STATE MACHINE FOR THE OSCILLOSCOPE BOARD

ACTIVE TRANSFER 1

ACTIVE TRANSFER 2

ACTIVE TRIGGER

VALID
ADDRESS

VALID
DATA

WRITE LATCH

VALID

VALID

READ LATCH

OUTPUT ENABLE

MEMORY WRITE CYCLE MEMORY READ CYCLE

UC CONTROLLER

EPT-4CE6-TOP

VALID
ADDRESS

VALID
DATA

SPI START

VALID

VALID

SPI WRITE CYCLE (HOST TO SLAVE)SPI READ CYCLE (SLAVE TO HOST)

SPI SCLK

SPI COMMUNICATIONS

I2C WRITE CYCLEI2C READ CYCLE

I2C BUS

SPI MOSI

SPI MISO

SPI CS

TIMING DIAGRAM FOR THE MEMORY, SPI AND I2C BUS ACCESS

WRITE LATCH

READ LATCH

OUTPUT ENABLE

VALID
SPI COMMAND

VALID

UC CONTROLLER

VALID
ADDRESS

VALID
DATA

I2C START

VALID

VALID

WRITE LATCH

READ LATCH

OUTPUT ENABLE

VALID
I2C COMMAND

VALID

I2C COMMUNICATIONS

UC CONTROLLER

EPT-4CE6-TOP

ACTIVE TRANSFER 3

ACTIVE TRANSFER 4

VALID

CONTROL
REGISTER
NUMBER

VALID

CONTROL
REGISTER

CONTENTS

TRANSFER_3_RECEIVED

VALID

VALID

TRANSFER_3_START

CONTROL REGISTER WRITE CYCLE CONTROL REGISTER READ CYCLE

UC CONTROLLER

TRANSFER_4_RECEIVED

TRANSFER_4_START

ACTIVE TRIGGER

ACTIVE TRANSFER 4

ACTIVE TRANSFER 3

UC CONTROLLER

MEMORY

SPI COMMUNICATIONS I2C 1 COMMUNICATIONS

0
1
2
3
4
5
6
7

DATA

ADDRESS

WRITE LATCH
READ LATCH

OUTPUT ENABLE

SPI START
I2C START

MEMORY WRITE

MEMORY READ

MEMORY ADDRESS

MEMORY DATA

ACTIVE TRANSFER 2

ACTIVE TRANSFER 1

I2C 2 COMMUNICATIONS

CONTROL
REGISTER
NUMBER

CONTROL
REGISTER

CONTENTS

VERILOG MODULES FOR THE OSCILLOSCOPE BOARD

EPT-4CE6-TOP

COMMAND

I2C 2 START

I2C 1 START

SPI START

COMMAND BUS

ACTIVE BLOCK

B
LO

C
K

 O
U

T

ST
A

R
T

B
LO

C
K

 W
R

IT
E

IDLE

HOST_WR_
ADDRESS

HOST_WR_
DATA

HOST_WR_C
OMPLETE

HOST_RD_A
DDRESS

HOST_RD_D
ATA

HOST_RD_C
OMPLETE

HOST_RD_O
UTPUT_EN

If(HOST_WR_LATCH)

If(!HOST_WR_LATCH)

If(HOST_RD_LATCH)

IDLE
MEM_WR_L

ATCH

MEM_WR_A
DDRESS

MEM_WR_A
DATA

MEM_RD_A
DDRESS

MEM_RD_D
ATA

MEM_RD_C
OMPLETE

MEM_WR_C
OMPLETE

If(MEMORY_WR_LATCH)

If(MEMORY_OUTPUT_ENABLE)

If(MEMORY_RD_LATCH)

If(HOST_OUTPUT_EN)

MEM_RD_O
UTPUT_EN

If(!MEMORY_WR_LATCH)

ACTIVE TRANSFER 1

ACTIVE TRANSFER 2

ACTIVE TRIGGER

VALID
ADDRESS

VALID
DATA

WRITE LATCH

VALID

VALID

READ LATCH

OUTPUT ENABLE

MEMORY WRITE CYCLE MEMORY READ CYCLE

TIMING DIAGRAM FOR THE UC CONTROLLER

HOST INTERFACE STATE MACHINE LOCAL MEMORY STATE MACHINE

ACTIVE TRANSFER 3

ACTIVE TRANSFER 4

VALID

CONTROL
REGISTER
NUMBER

VALID

CONTROL
REGISTER

CONTENTS

TRANSFER_3_RECEIVED

VALID

VALID

TRANSFER_3_START

CONTROL REGISTER WRITE CYCLE CONTROL REGISTER READ CYCLE

TRANSFER_4_RECEIVED

TRANSFER_4_START

IDLE

CR NUMBER
RECIEVED

LATCH CR
NUMBER

WAIT FOR
CR

CONTENTS

CR
COMPLETE

LATCH CR
CONTENTS

If(TRANSFER_3_RECEIVED)If(!TRANSFER_4_RECEIVED)

If(TRANSFER_4_RECEIVED)

CONTROL REGISTER STATE MACHINE

IDLE

START

LATCH
COMMAND

MEMORY
OUTPUT
ENABLE

MEMORY
RD DATA

MEMORY
RD LATCH

START SPI
TRANSMIT

MEMORY
RD ADDRESS

If(COMMAND_LATCH)

If(spi_transmit_word_enable)

If(number_of_spi_bytes_to_send == 0)

SPI COMMUNICATIONS STATE MACHINE

EPT_4CE6_AF_D1_TOP
SPI COMMUNICATIONS

VALID
COMMAND

ADDRESS

DATA

WRITE LATCH

VALID

VALID

READ LATCH

OUTPUT ENABLE

MEMORY READ CYCLE

CHECK SPI
COMPLETE

COMMAND LATCH

MEMORY
WRITE
CYCLE

MEMORY
WR DATA

MEMORY
WR LATCH

MEMORY
WR

ADDRESS

CHECK READ
WRITE FLAG

START SPI
RECEIVE

If(spi_payload_byte_count < number_of_spi_bytes_to_send)

UC CONTROLLER

2 Verilog Simulation

EPT-4CE6-DSO TEST BENCH

EPT-4CE6-DSO-TOP
AD9283-ADC-

MODEL
PGA-117-MODEL

HOST-FT245-
MODEL

Test Bench Code Writes
Four PGA Channel Gain

Values into four different
Memory locations

The Task, WriteDSOMemory
is used to command the

HOST-245-MODEL to write
these values through the

Active Transfer Library
Interface.

This emulates the code
running on the Windows PC
communicating with the EPT

DSO

Test Bench Code Writes to
the Control Register. This
selects four channels to
scan and starts the ADC

sampling

The Task,
WriteDSOControlReg is used
to command the HOST-245-
MODEL to write this register
through the Active Transfer

Library Interface.

This emulates the code
running on the Windows
PC communicating with

the EPT DSO

All four channels are
selected, by going high.

The code in the EPT-4CE6-
TOP loads the delay for the
sampling rate then asserts
the adc_convst_cmd which
starts the State Machine.

The Main State Machine
in EPT-4CE6-TOP goes to
the “START_ADC_CONV”

state.

This starts the cycle of selecting
the correct PGA channel. Then

reading the previous sample from
the ADC.

Then finally, delaying the ADC-
ENCODE signal to match the

selected sample rate and
starting the cycle over again.

The SPI Communications
function in the EPT-4CE6-TOP
sends the select channel and
gain to the PGA via SPI Bus.

The sample storage code in
the EPT-4CE6-TOP stores the
value from ADC_DATA into

the local memory array.

The State Machine cycles
through ENCODE_HIGH,

ENCODE_LOW,
CHECK_MAX_SAMPLES,
UPDATE_CH_SELECT and

starts over at ENCOED_HIGH.

The
mem_array_storage_index

increments to allow the next
ADC sample to be stored in

next cell in the memory array.

The State Machine continues
through its cycles until

mem_array_storage_index
reaches: 0x00ff or a count of

256 samples

Max_samples_reached_reg is
asserted when

mem_array_storage_index
reaches 0x00ff. The State

Machine goes into
TRANSFER_TO_HOST state.

The code in EPT-4CE6-TOP
asserts the start_block_out
signal and the Active_Block

EndTerm will assert the
block_byte_ready signal.

At each block_byte_ready
assertion, the code should

send a byte from the memory
array into the Active_Block

EndTerm

The code continues to increment mem_array_index
and supply the next byte in the memory array to

the Active_Block EndTerm until
block_mem_array_count_max_reached asserts.

At this point, all the bytes in the memory array
have been transferred into the Active_Block

EndTerm. The code in EPT-4CE6-Top returns to idle
conditions. The State Machine cycles to

HOST_TRANSFER_COMPLETE and back to
ENCODE_HIGH. This starts the whole sample, store,

and transfer cycle over.

The Active_Block EndTerm communicates with the
Active_Transfer_Library to read in the bytes from

the memory array then transfers them to the
HOST_FT245_MODEL.

This transactions emulates the FPGA
communications with the Windows PC.

