
DueProLogic Project Guide

Page 1

DueProLogic Arduino Communications Project

This project guide describes how to assemble all the code necessary for

communications between the Arduino Due and the DueProLogic. The project is called

the Data Collector and uses the Due to generate a random eight bit number, transmit s

the number to the DueProLogic, and the DueProLogic transmits the value to the PC for

display.The project has three individual code projects:

• Arduino *.ino project

• DueProLogic FPGA project

• Data Collector Visual C# project

DueProLogic Project Guide

Page 2

Table of Contents

1 Introduction and General Description ... 3
2 FPGA Development Process ... 3

2.1 Designing a Simple Data Collection Sampler .. 3

2.1.1 The Arduino Microcontroller Board ... 4
2.1.2 Create Data Generator ... 4
2.1.3 Select I/O’s for Fast Throughput on Arduino ... 4
2.1.4 Coding the Arduino Data Sampler .. 6
2.1.5 Building Arduino Project .. 8

2.1.6 Programming the Arduino... 10

2.1.7 FPGA Active Transfer EndTerm Coding and Initiation 13

2.1.8 FPGA: Define the User Design. .. 14
2.1.9 FPGA: Compile/Synthesize the Project .. 24

2.1.10 FPGA: Program the DPL Flash .. 28
2.1.11 PC: Design the Project .. 31
2.1.12 PC: Coding the Project .. 32

2.1.13 PC: Compiling the Active Host Application ... 43
2.1.14 Adding the DLL’s to the Project ... 44

2.1.15 Connecting the Project Together ... 45
2.1.16 Testing the Project... 49

DueProLogic Project Guide

Page 3

1 Introduction and General Description
This project guide is separated into the hardware description and the code development

process.

2 FPGA Development Process
There is no standard for developing embedded electronics. The best method is the one

that works for the user. These methods can range from a top down approach where the

design is written down first and all code is written, then compile, execute and test. Or a

bottom up approach can be pursued where a small piece of the project is assembled and

verified (i.e. I2C communication to a sensor). Then the next piece is assembled and

verified (i.e. collect sensor data in a storage buffer) and connected to the first. And so

on, until the whole design is complete. Or, you could use any combination of these two

extremes.

2.1 Designing a Simple Data Collection Sampler
The Data Collection Sampler is a very simple introductory project that will guide the

user in the creation of an overall design using the Arduino Programming Language,

Verilog HDL, and C# Language. These elements will run on the Arduino Platform,

EPT-4CE6-AF-D1 FPGA, and a Windows 7 PC respectively.

DueProLogic Project Guide

Page 4

The first order of business is to layout the design. Start with the Arduino, and create a

simple bit output using a random number generator. Next, use the EPT Active Transfer

Library to create a byte transfer module to read the byte from the Arduino and send it to

the Host PC. Finally, use EPT Active Host to accept the byte transfer from EPT Active

Transfer, and display in a textbox. This is just the hierarchical system level design. In

the following sections, we will fill in the above blocks.

2.1.1 The Arduino Microcontroller Board

 Using the features and capabilities of the Arduino development system, the user

will develop the source code using the “Wiring” programming language and download

the resulting binary code from the Processing development environment to the Flash

memory of the microcontroller.

2.1.2 Create Data Generator

To keep the design simple, no external data source will be used. We will create a data

source using the Arduino, then transmit this data to the EPT-4CE6-AF-D1 board. To

create the data source, we will use the random() function. This function generates

pseudo random numbers from a seed value. We will give the randomSeed() function a

fairly random input using the value from the analogRead(). This will give different

values every time the random() function is called. We will limit the random number

output from the function to 8 bits. The random() function will be called once per

iteration of the loop() function.

The randomSeed() function must be called during the setup() function. It takes as input

parameter the output of the Analog Pin 1. The output of this Pin 1 will have a small

amount of random noise on it. Because of this noise, the randomSeed() function will

produce a different seed every time the sketch is initialized.

2.1.3 Select I/O’s for Fast Throughput on Arduino

An 8 bit port is used to connect the 8 bit byte from the random function output to the

input of the EPT-4CE6-AF-D1. There is also a one bit control line which will be used to

inform the FPGA that a byte is ready to be written to the USB.

DueProLogic Project Guide

Page 5

Each port is controlled by three registers, which are also defined variables in the

Arduino language. The Output Write Enable Register (OWER) determines whether the

pin is an INPUT or OUTPUT. The Output Data Set Register (ODSR) controls whether

the pin output is HIGH or LOW, and the Output Write Disable Register sets selected

pins to disable write.

PORTC maps to Arduino digital pins 33 to 41 on the 2x18 connector of the Due

REG_PIOC_OWER - The Port C Write Enable Register - read/write

REG_PIOC_ODSR - The Port C Data Register - read/write

 REG_PIOC_OWDR - Disable writing to all other pins on the same port

The ports and pins for the Data Collection Sampler project must be initialized in the

setup() function. The setup function will only run once, after each powerup or reset of

the Arduino board.

DueProLogic Project Guide

Page 6

After the setup() function executes, the PORT C is ready to be assigned the results of

our random() function. And the C_Enable pin will be used to latch the value on PORT

C pins into the FPGA.

2.1.4 Coding the Arduino Data Sampler

Now that we have the data generator and the ports defined, we can add some delays in

the loop() function and make a simulated data collector. Because Start and Stop buttons

will be added to the C# Windows Form, the Data Collector code will need to monitor a

single pin output from the EPT-4CE6-AF-D1. This output pin (from the EPT-4CE6-AF-

D1) becomes an input to the Arduino and is used in conditional switch.

DueProLogic Project Guide

Page 7

This code will sample the Start/Stop switch which is an output from the EPT-4CE6-AF-

D1 on J10 PIN 4. On the Arduino, this is PIN 11 of the Digital pins. Each iteration of

the loop() function, the startStopBit variable stores the state of DigitalPin17. Then, a

delay of 500 milliseconds is added. The delay() function pauses the program for the

amount of time (in milliseconds) specified as parameter. Next, the startStopBit is

checked with a conditional switch. If the bit is set, the conditional branch is entered and

the random number is sent to the EPT-4CE6-AF-D1. If the bit is not set, the end of the

loop() function is reached and it branches to the top of the loop().

We will also add an LED Pin on PIN 13 of the Digital Pins. This will blink the LED on

the DUE so that we can have a visual indication that the project is working.

We want to add a delay so that the data from the generated displays on the Windows PC

long enough for our eyes to verify that the data is updating correctly. This delay should

be one second in total. So, the data will change then stay stable in the textbox for one

second before changing again.

For the LED to blink correctly, it should turn on, delay for half a second then turn off

and delay for half a second. If we don’t use half second intervals for the LED blink, the

LED will appear to not change at all. It will look like it stays on all the time or off all

the time.

So, the code looks like this:

DueProLogic Project Guide

Page 8

Notice that PORT C equals the return of random(255). The parameter passed to the

random() function is the maximum decimal value of the return value. In our case we

want the maximum value to be an 8 bit value, B11111111 = 0xff = 255(decimal). Also,

note that the C_Enable write enable signal for the FPGA has back to back instructions

turning it on then off immediately. Because the DUE SAM3 chip takes approximately

160 clock cycles to execute the digitalWrite() function and affect the Pin at C_Enable,

this produces a write enable pulse of 10 microseconds.

RANDOM VALUERANDOM VALUE

A0 (WRITE ENABLE)

PORTD

10 us

The RANDOM VALUE will be stable before the C_Enable (WRITE ENABLE) asserts

thus guaranteeing a successful transfer of data from Arduino to FPGA.

2.1.5 Building Arduino Project

Building the Arduino project is the process of converting (compiling) the code you just

wrote into machine level code that the processor can understand. The Arduino IDE is

the software tool that does the compiling. The machine level code is a set of basic

instructions that the processor uses to perform the functions the user code. Browse to

the \Projects_Arduino\Arduino_Data_Collector_Code\ folder of the EPT FPGA

Development System DVD. Copy Arduino_Due_Data_Collector.ino .

To compile your code,

• Open up the Arduino IDE

DueProLogic Project Guide

Page 9

• Load your code into the Sketch.

DueProLogic Project Guide

 Page
10

• Click the Verify button

• The sketch will compile

• If there are no errors, the compiling will complete successfully

Now we are done with compiling and ready to program the Arduino

2.1.6 Programming the Arduino

Programming the Arduino is the process of downloading the user’s compiled code into

the Flash memory of the Atmel ATMega328 chip. Once the code is downloaded, the

Arduino IDE resets the chip and the processor starts executing out of Flash memory.

To program the Arduino

DueProLogic Project Guide

 Page
11

• Connect the USB cable from PC to Arduino

• Load the Arduino USB driver according to the manual

• Plug in your board and wait for Windows to begin it's driver installation
process. After a few moments, the process will fail, despite its best efforts

• Click on the Start Menu, and open up the Control Panel.

• While in the Control Panel, navigate to System and Security. Next, click on
System. Once the System window is up, open the Device Manager.

• Look under Ports (COM & LPT). You should see an open port named "Arduino
Due (COMxx)"

• Right click on the "Arduino Due (COmxx)" port and choose the "Update Driver
Software" option.

• Next, choose the "Browse my computer for Driver software" option.

• Finally, navigate to and select the Due's driver file, named
"ArduinoDUE.inf", located in the "Drivers" folder of the Arduino Software
download (not the "FTDI USB Drivers" sub-directory).

• Windows will finish up the driver installation from there.

DueProLogic Project Guide

 Page
12

• Once the driver is loaded, we can set the COM Port. Click on Tools and select

Serial Port, then click the available port.

• To load the code, click on the Upload button.

DueProLogic Project Guide

 Page
13

When the code has completed loading, the Arduino IDE will automatically command

the processor to start executing the code. The L LED will blink at one second intervals.

2.1.7 FPGA Active Transfer EndTerm Coding and Initiation

The EPT-4CE6-AF-D1 will accept the data collected by the Arduino and transfer it to

the PC. It is designed to plug directly into the Arduino Due and there is no need for

external wires to be added. The Active Transfer EndTerms are used to connect the

Active Transfer Library to the user code. This makes it easy to transfer data to and from

the PC via the USB. The user needs to create a state machine to control the transfer

between the incoming data and the Active Transfer EndTerms. We will now go through

exercise of creating the FPGA code for the Data Collector Sampler.

DueProLogic Project Guide

 Page
14

2.1.8 FPGA: Define the User Design.

In this step we will define the user’s code and include EndTerms and the EPT Active

Transfer Library. The Active Transfer Library contains a set of files with a “.vqm”

name extension which select particular operations to perform (e.g., byte transfer, block

transfer, trigger).. The active_transfer_library.vqm file must be included in the top level

file of the project. The EndTerms will connect to the active_transfer_library and

provide a path to connect user code to the library. All of these files are available on the

Earth People Technology Project DVD.

ACTIVE TRANSFER
LIBRARY

TRIGGER ENDTERM

SINGLE TRANSFER
ENDTERM

BLOCK ENDTERM

USER CODE

We will build our FPGA project using Quartus II software from Altera. The primary file

defining the user’s FPGA project is named “EPT_4CE6_AF_D1_Top.v”. It defines the

user code and connects the active_transfer_library and active_transfer logic functions.

In order to route the pins of the Arduino to the FPGA, the Pin Planner tool is used. This

tool allows the user to match internal net names to the pins of the FPGA.

Our project needs to accept an 8 bit value on the J8 connector and a write enable on Pin

1 of J9. For this, we can use the active_transfer.vqm module as the interface to the

active_transfer_library. It accepts a single byte and latches it with a single enable net.

Because the active_transfer_library runs at 66 MHz we will need to write some code

ensure that the slower C_Enable (write enable) signal from the Arduino can latch the

data into the active_transfer module.

DueProLogic Project Guide

 Page
15

FPGA: Coding up the DesignThe first thing to do is to create a top level file for the

project. The top level file will include the input and outputs for the FPGA. These are

declared according to the Verilog syntax rules. We won’t go through all the rules of

Verilog here, but feel free to explore the language more thoroughly at

www.asic-world.com/verilog/

We need to add the inputs and outputs for active_transfer_library, user code, leds, and

switches. Each port is described as input, output or inout. It is followed by the net type

wire or reg. If it is a vector, the array description must be added.

http://www.asic-world.com/verilog
http://www.asic-world.com/verilog

DueProLogic Project Guide

 Page
16

Next, the parameter’s are defined. These are used as constants in the user code.

DueProLogic Project Guide

 Page
17

Next is the Internal Signal and Register Declarations.

DueProLogic Project Guide

 Page
18

DueProLogic Project Guide

 Page
19

The reset signal is generated by a counter that starts counting upon power up. When the

counter reaches GLOBAL_RESET_COUNT.

The four LED’s are set by the bottom four bits of the active_trigger output register.

These trigger outputs can be set by using a function in the Active_Host DLL on the PC.

The Data Collector project will use LED3 to indicate the state of the Start/Stop signal.

Next, we will add the transfer detection signal from the Arduino. This block will require

three registers.

• transfer_write_reg –This is a latch register to hold the state of the C_Enable

(Write Enable)

• transfer_write –This register is used to start the active_transfer single byte write

to the PC.

• transfer_write_byte –This is an 8 bit register to hold the value of the Data

Collection output.

DueProLogic Project Guide

 Page
20

This block will compare the input signal on C_Enable to a high. This signal is derived

from Pin 5 of J18 which is routed to the C_Enable (Write Enable) of the Arduino DUE.

When this bit goes high, the priority encoder goes into statement 1 and sets

transfer_write_reg and transfer_write high and latches the value on the

data_from_arduino register (this register is directly connected to pins 33-41 on the

Arduino DUE) to the transfer_write_byte register. By setting transfer_write_reg high,

the priority encoder goes into statement 2 which will set transfer_write register to low

and stay in statement 2 of the priority encoder. The back to back high and low on the

transfer_write register will cause the active_transfer module to latch the value of

transfer_write_byte into the active_transfer_library module and sets up the byte transfer

to the PC. When the C_Enable (Write Enable) pin goes low, the encoder will reset

transfer_write_reg and transfer_write to low. The encoder goes back to waiting for the

C_Enable (Write Enable) to assert high.

DueProLogic Project Guide

 Page
21

This block of code takes care of reading the random word from the Arduino using the

C_Enable (Write Enable) Pin. However, because the Arduino is expecting a Start/Stop

bit on Digital Pin8, the FPGA code has to provide this bit. This presents a problem, the

EPT-4CE6-AF-D1 has 3 eight bit bi-directional ports. Which means each port is has a

direction which is either input or ouput at a given time. However, the ports can be

switched between input and output at any time. Two of the three ports must be used as

inputs into the FPGA for the random word and the C_Enable (Write Enable) Pin. So,

the third port can be used as the output port.

DueProLogic Project Guide

 Page
22

The start_stop_cntrl signal is set by using the TRANSFER_CONTROL state machine

in the following section. So, if the start_stop_cntrl signal is set, the Output Enable is

turned on and the signal will appear on DigitalPin11 on the Arduino XIOH connector.

As the Data Collector code cycles through its loop() function, it will cause the if

statement to branch into its conditional statement. The Data Collector code will assert

the C_Enable (Write Enable) Pin in its conditional statement. The C_Enable (Write

Enable) Pin will cause the FPGA code to enter into its first conditional statement.

Next, we add a TRANSFER_CONTROL state machine to read the Control Register

from the Host PC using the active_transfer EndTerm.

The bits of the Control Register are defined below.

Register Bits Description Assertion

Control 0 Start Stop Cntrl High

DueProLogic Project Guide

 Page
23

1 Not Used

2 LED Reset High

3 Switch Reset High

4 Transfer In Loop Back High

5 Not Used

6 Not Used

7 Not Used

7 Not Used

Next, up is the instantiation for the active_transfer_library. The ports include the input

and output pins and the two buses that connect the active modules. These buses are the

input UC_IN[23:0] and output UC_OUT[21:0].

Finally, we instantiate the Active EndTerms. For the Data Collection project, we only

need active_transfer and active_trigger EndTerms. The uc_out port for both modules

must be shared. Since they both drive this bus, a bus wide wired-or circuit is used so

DueProLogic Project Guide

 Page
24

that they don’t drive each other. The active_transfer EndTerm has a port for the address

(uc_addr). This allows the PC to address up to 8 different modules. Just add a three bit

address to this port and the PC must add this same address to communicate with this

module.

Next, we are ready to compile and synthesize.

2.1.9 FPGA: Compile/Synthesize the Project

The Quartus II application will compile/ synthesize the user code,

active_transfer_library, and the active EndTerms. The result of this step is a file

containing the FPGA code with “*.pof”. First, we need to create a project in the

DueProLogic Project Guide

 Page
25

Quartus II environment. Follow the directions in the section: “Compiling, Synthesizing,

and Programming FPGA”.

Bring up Quartus II, then use Windows Explorer to browse to

c:/altera/xxx/quartus/qdesigns create a new directory called: “EPT_Data_Collector”.

Open Quartus II by clicking on the icon .

 Under Quartus, Select File->New Project Wizard. The Wizard will walk you through

setting up files and directories for your project.

At the Top-Level Entity page, browse to the

c:\altera\xxx\quartus\qdesigns\EPT_Data_Collector directory to store your project.

Type in a name for your project EPT_4CE6_AF_D1

Follow the steps up to Add Files. At the Add Files box, click on the Browse button and

navigate to the project Data Collector install folder in the dialog box. Browse to the

\Projects_HDL\EPT_Data_Collector \ EPT_4CE6_AF_ Top folder of the EPT FPGA

Development System DVD. Copy the files from the \src directory.

DueProLogic Project Guide

 Page
26

• Active_transfer.vqm

• Active_trigger.vqm

• Active_transfer_library.vqm

• eptWireOr.v

• EPT_4CE6_AF_Top.v

Add the files:

Continue following the instructions by adding a device and finishing the project

instantiation. Then, add the Pins.

• Under Assignments, Select Import Assignments.

• At the Import Assignment dialog box, browse to the

\Projects_HDL\EPT_Data_Collector \ EPT_4CE6_AF_D1_Top folder of the

EPT FPGA Development System DVD. Select the Quartus Specification file, “

EPT_4CE6_AF_D1_Top.qsf” .

• Click Ok. Under Assignments, Select Pin Planner. Verify the pins have been

imported correctly.

DueProLogic Project Guide

 Page
27

Next, we need to add the Synopsys Design Constraint file. This file contains timing

constraints which forces the built in tool called TimeQuest Timing Analyzer to analyze

the path of the synthesized HDL code with setup and hold times of the internal registers.

It takes note of any path that may be too long to appropriately meet the timing

qualifications. For more information on TimeQuest Timing Analyzer, see

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf?GSA_pos=1&WT.oss_r=1&

WT.oss=TimeQuest Timing Analyzer

Browse to the \Projects_HDL\EPT_Data_Collector \EPT_EPT-4CE6-AF-D1_TOP

folder of the EPT FPGA Development System DVD. Select the

“EPT_4CE6_AF_D1_Top.sdc” file.

Copy the file and browse to c:\altera\xxx\quartus\qdesigns\EPT_Data_Collector

directory. Paste the file.

and select the Start Compilation button.

DueProLogic Project Guide

 Page
28

This will cause the compile and synthesization process. After successful completion, the

screen should look like the following:

If the synthesis fails, you will see the failure message in the message window. Note that

in addition to fatal errors, the compile process can produce “warnings” which do not

necessarily prevent execution of the code but which should be corrected eventually.

At this point the project has been successfully compiled, synthesized and a

programming file has been produced. See the next section on how to program the

FPGA.

2.1.10 FPGA: Program the DPL Flash

The final step is programming the “*.pof” file into the FPGA. Follow the section:

“Programming the FPGA”.

DueProLogic Project Guide

 Page
29

• Connect the EPT-4CE6-AF-D1 to the PC,

• Open up Quartus II,

• Open the programmer tool

• In the upper left corner of the Programmer Tool, there is a button labeled

“Hardware Setup”. Verify that EPT-Blaster v1.5b” has been selected. If not,

go to the section JTAG DLL Insert to Quartus II and follow the directions.

• Check the box under Program/Configure

• Click the Start button.

When the programming is complete, the Progress bar will indicate success.

Select the EPCS1 under “Device”.

Next, selet the checkbox under the “Program/Configure” of the Programmer Tool.

DueProLogic Project Guide

 Page
30

Click on the Start button to to start programming the FPGA. The Progress bar will

indicate the progress of programming.

When the programming is complete, the Progress bar will indicate success.

DueProLogic Project Guide

 Page
31

At this point, the EPT-4CE6-AF-D1 is programmed and ready for use.

2.1.11 PC: Design the Project

The final piece of the Data Collection Sampler is the PC application. This application

will fetch the data from the FPGA of the EPT-4CE6-AF-D1 and display it on the

screen. It includes user code, windows form, and the Active_Host DLL.

The Active_Host DLL is designed to transfer data from the FPGA when it becomes

available. The data will be stored into local memory of the PC, and an event will be

triggered to inform the user code that data is available from the addressed module of the

FPGA. This method, from the user code on the PC, makes the data transfer transparent.

The data just appears in memory and the user code will direct the data to a textbox on

the Windows Form.

The Data Collector project will perform the following functions.

• Find EPT-4CE6-AF-D1 Device.

• Open EPT-4CE6-AF-D1 Device.

• Start the Arduino data collection process.

• Wait for data from EPT-4CE6-AF-D1.

DueProLogic Project Guide

 Page
32

• Display data from EPT-4CE6-AF-D1 in textbox.

2.1.12 PC: Coding the Project

The user code is based on the .NET Framework and written in C#. The language is great

for beginners as it is a subset of the C++ language. It has the look and feel of the

familiar C language but adds the ease of use of classes, inheritance and method

overloading. C# is an event based language which changes the method of writing code

for this project. See the section “Assembling, Building, and Executing a .NET Project

on the PC” for a better description of event based language programming.

To start the project, follow the section “Assembling, Building, and Executing a .NET

Project on the PC”. Use the wizard to create project called “Data_Collector”. When the

wizard completes, the C# Express main window will look like the following.

These statements setup the namespace and the class for the project. There are several

other files that are created by the wizard such as Form1.Designer.cs, Program.cs,

Form1.resx. We don’t need to go into these support files, we will just focus on the

Form1.cs as this is where all the user code goes.

The project environment must be set up correctly in order to produce an application that

runs correctly on the target platform. Visual C# Express defaults new projects to 32 bits.

If you OS is a 64 bit platform, use the following directions to set up a 64 bit project.

First, we need tell C# Express to produce 64 bit code if we are running on a x64

platform. Go to Tools->Settings and select Expert Settings

DueProLogic Project Guide

 Page
33

Go to Tools->Options, locate the “Show all settings” check box. Check the box.

In the window on the left, go to “Projects and Solutions”. Locate the “Show advanced

build configurations” check box. Check the box.

DueProLogic Project Guide

 Page
34

Go to Build->Configuration Manager.

In the Configuration Manager window, locate the “Active solution platform:” label,

select “New” from the drop down box.

DueProLogic Project Guide

 Page
35

In the New Solution Platform window, click on the drop down box under “Type or

select the new platform:”. Select “x64”.

Click the Ok button. Verify that the “Active Solution Platform” and the “Platform” tab

are both showing “x64”.

DueProLogic Project Guide

 Page
36

Click Close.

Then, using the Solution Explorer, you can right click on the project, select Properties

and click on the Build tab on the right of the properties window.

Verify that the “Platform:” label has “Active (x64)” selected from the drop down box.

Next, unsafe code needs to be allowed so that C# can be passed pointer values from the

Active Host. Right click on the “Data Collector” project in the Solution Explorer. Select

Properties.

DueProLogic Project Guide

 Page
37

Click on the Build tab and locate the “Allow unsafe code” check box. Check the box

Now we are ready to start coding.

Next, we add two classes for our device. One class stores the information useful for our

device for Transmit to the EndTerms such as, address of module, length of transfer etc.

DueProLogic Project Guide

 Page
38

The next class is used to store parameters for receiving data from the device.

EPT-4CE6-AF-D1

The first function called when the Windows Form loads up is the

Data_Collector_Load(). This function is called automatically upon the completion of

the Windows Form, so there is no need to do anything to call it. Once this function is

called, it in turn calls the ListDevices().

The ListDevices() function calls the EPT_AH_Open() function to load up the

ActiveHost Dll. Next, it calls EPT_AH_QueryDevices() which searches through the

registry files to determine the number of EPT devices attached to the PC. Next,

EPT_AH_GetDeviceName() is called inside a for loop to return the ASCII name of

each device attached to the PC. It will automatically populate the combo box,

cmbDevList with all the EPT devices it finds.

DueProLogic Project Guide

 Page
39

The user will select the device from the drop down combo box. This value can be sent

to the OpenDevice() function using the button Click of the Open button.

The device_index variable is used to store the index of the device selected from the

combo box. This variable is passed into the EPT_AH_OpenDeviceByIndex(). This

DueProLogic Project Guide

 Page
40

process is started by the user clicking on the “Open” button. If the function is

successful, the device name is displayed in the label, labelDeviceCnt. Next, the device

is made the active device and the call back function is registered using the

RegisterCallBack() function. Finally, the Open button is grayed out and the Close

button is made active.

Next, the callback function is populated. This function will be called from the Active

Host dll. When the EPT Device has transferred data to the PC, the callback function

will do something with the data and command.

DueProLogic Project Guide

 Page
41

Because the callback function communicates directly with the dll and must pass

pointers from the dll to the C#, marshaling must be used. Marshaling is an advanced

topic and will not be covered in this manual.

When EPTReadFunction() callback is called and passed parameters from the Active

Host dll, it populates the EPTReceiveData object. It then calls EPTParseReceive()

function. This function uses a case statement to call the TransferOutReceive() function.

TransferOut Receive() creates a string from the EPTReceiveData.Payload parameter.

Then sends the string to the textbox, tbDataBytes.

DueProLogic Project Guide

 Page
42

Controls such as buttons are added to the Form1.cs[Design] window which allow

turning on and off signals. These include

• btnWriteByte

• btnTransferReset

• btnOk

• btnClose

• btnResetBlock

Refer to section 1.6.4 Adding Controls to the Project for details about using the

ToolBox to place controls on a design. The btnWriteByte click event calls the

EPT_AH_SendTransferControlByte(). This function is used to turn on/off bits in the

Control Register in the FPGA code. The btnWriteByte will set the start_stop_cntrl

signal in the FPGA to one. This signal starts the Arduino Data Collector sending its

random word to the FPGA.

The btnTransferReset sets the start_stop_cntrl bit in the Control Register to zero. This

action will cause the Arduino Data Collector to stop sending the random word to the

FPGA.

The btnResetBlock button will clear the tbDataBytes textblock. The Clear() method is

inherited from the textbox class.

DueProLogic Project Guide

 Page
43

The btnOk and btnClose buttons are used to end the application. It calls the function

EPT_AH_CloseDeviceByIndex() to remove the device from the Active Host dll. The

buttons btnOpen and btnClose have their Enabled parameter set to true and false

respectively. The Enabled parameter controls whether the button is allowed to launch an

event or not. If it is not enabled, the button is grayed out. At the end of each click event,

the Application.Exit() method is called. This exits the form.

This is all that is needed for the Data Collector project. The Arduino will generate a

random 8 bit word. It then transmits that word to the FPGA using the C_Enable

(WRITE_ENABLE) signal. The FPGA transmits the 8 bit word to the PC using the

ACTIVE TRANSFER module of the Active_Transfer Library. The dll reads the 8 bit

word into local memory. It then calls the Callback function, EPTReadFunction. The 8

bit is finally displayed to screen using the MessageBox.Show().

2.1.13 PC: Compiling the Active Host Application

Building the Data_Collector project will compile the code in the project and produce an

executable file. It will link all of the functions declared in the opening of the

Data_Collector Class with the Active Host dll. The project will also automatically link

the FTD2XX.dll to the object code. Follow section: Assembling, Building, and

Executing a .NET Project on the PC. Browse to the

\Projects_ActiveHost_xxBit\EPT_Data_Collector \Data_Collector\ folder of the EPT

FPGA Development System DVD. Copy the following files into the project.

• Active_transfer_xxx.cs

• Data_Collector.csproj

DueProLogic Project Guide

 Page
44

• Data_Collector.csproj.user

• Form1.cs

• Form1.Designer.cs

• Program.cs

To build the project, go to Debug->Build Solution.

The C# Express compiler will start the building process. If there are no errors with code

syntax, function usage, or linking, then the environment responds with “Build

Succeeded”.

If the build fails, you will have to examine each error in the “Error List” and fix it

accordingly. If you cannot fix the error using troubleshooting methods, post a topic in

the Earth People Technology Forum. All topics will be answered by a member of the

technical staff as soon as possible.

2.1.14 Adding the DLL’s to the Project

Locate the EPT FPGA Development System DVD installed on your PC. Browse to the

Projects_ActiveHost folder (choose either the 32 bit or 64 bit version, depending on

whether your OS is 32 or 64 bit). Open the Bin folder, copy the following files:

• ActiveHostXX.dll

DueProLogic Project Guide

 Page
45

• ftd2xxXX.dll

and install them in the bin\x64\x64 folder of your EPT_Data_Collector project.

Save the project.

At this point, the environment has produced an executable file and is ready for testing.

Next, we will connect everything together and see it collect data and display it.

2.1.15 Connecting the Project Together

Now we will connect the Arduino, EPT-4CE6-AF-D1, and the PC to make a Data

Collector. First, connect a USB cable from a USB port on the PC to the Arduino.

Second, connect a USB cable from a open USB port on the PC to the EPT-4CE6-AF-

D1.

Next, open the Arduino IDE and select File->Open and select your sketch created

earlier, Arduino_Data_Collector_Code_U2.ino.

DueProLogic Project Guide

 Page
46

Select the file and click Open. The sketch will now populate the Arduino IDE window.

Compile and Download the sketch into the Arduino microcontroller using the Upload

button.

DueProLogic Project Guide

 Page
47

The Arduino IDE will compile the project, then transmit the machine level code into the

ATMega328 SRAM to start the program. When this is complete, the Yellow L LED

will blink about once per second.

If this LED is blinking at the rate of once per second, the Arduino and the Data

Collector project are ready for the EPT 570-AP-U2 code.

The FPGA should already be programmed with its Data Collector Project. If it isn’t,

follow the instructions in section 3.1.10.

Open the EPT Data Collector on the PC by browsing to the Data Collector project

folder. Locate the executable in the \bin\x64\Release folder.

DueProLogic Project Guide

 Page
48

Initiate the application by double clicking the application icon in the \Release folder of

the project. The application will open and automatically load the Active Host dll. The

application will locate the EPT 570-AP-U2 device. Next, the combo box at the top will

be populated with the name of the device.

EPT USB <-> JTAG&Serial Cable B

Select the EPT 570-AP device and click the Open button. If the Active Host application

connects to the device, a label will indicate “Device Connected”. Next, select the

address of the Active Transfer module in the FPGA. In our case it is “2”.

DueProLogic Project Guide

 Page
49

EPT USB <-> JTAG&Serial Cab

2.1.16 Testing the Project

To test our Data Collector project, just click on the Start button. As soon as the device

connects, the data from the Arduino will appear in the received data textBox.

EPT USB <-> JTAG&Serial Cab

And that’s all there is to the Data Collector Project. It’s up to the user to use this project

as a base to create much larger projects. You can easily make a volt meter using this

project by turning off the Random number generator in the Arduino and reading the

DueProLogic Project Guide

 Page
50

Analog Pins. Also, reformat the textBox display that it shows in decimal instead of the

Hexadecimal display.

DueProLogic Project Guide

 Page
51

APPENDIX I

List of Abbreviations and Acronyms

EPT Earth People Technology

FIFO First In – First Out

FTDI Future Technology Device International

HSP Hyper Serial Port

I2C Inter-Integrated Circuit

JTAG Joint Test Action Group

PC Personal Computer

FPGA Complex Programmable Logic Device

USB Universal Serial Bus

APPENDIX II

Details of the Altera EPM570 FPGA

