
 Verilog Programming Guide

1

INTRODUCTION

Verilog is a HARDWARE DESCRIPTION LANGUAGE (HDL). A
hardware description language is a language used to describe a
digital system: for example, a network switch, a microprocessor or a
memory or a simple flip-flop. This just means that, by using a HDL,
one can describe any (digital) hardware at any level.

 1 // D flip-flop Code

 2 module d_ff (d, clk, q, q_bar);

 3 input d ,clk;

 4 output q, q_bar;

 5 wire d ,clk;

 6 reg q, q_bar;
 7

 8 always @ (posedge clk)

 9 begin

 10 q <= d;

 11 q_bar <= ! d;

 12 end
 13

 14 endmodule

You could download file d_ff.v here

One can describe a simple Flip flop as that in the above figure, as
well as a complicated design having 1 million gates. Verilog is one of
the HDL languages available in the industry for hardware designing.
It allows us to design a Digital design at Behavior Level, Register
Transfer Level (RTL), Gate level and at switch level. Verilog allows
hardware designers to express their designs with behavioral
constructs, deferring the details of implementation to a later stage in
the final design.

http://www.asic-world.com/code/verilog_tutorial/d_ff.v

 Verilog Programming Guide

2

/////////////////////////////////////Lesson #1///

In this first lesson, let’s set up the ModelSim environment and
simulate a simple flip flop.

First, set up your file system to allow easy access to updating and
modifying your files. There are many ways to set up your file
system, the following is the one that works best for me.

Copy the Lesson 1 Folder over to our local drive from the DVD. In
this folder you will notice a top level project folder.

The project level folder is called “EPT_10M04_AF_Flip_Flop”.
Under this project level folder are various revisions of the project.
Multiple revisions allow you to keep copies of previously working
projects and refer to them later when the currently edited source
code no longer compiles.

Under the current revision of the project, this folder does not include
a “_Rev_x” suffix. The project is organized with the following
folders:

• EPT_10M04_AF_S2_Top – This folder contains all the Altera

project level files such as pin, sdc, configuration, programming

object files etc.

• ModelSim – This folder contains all the compiled object files for

ModelSims use. It also includes the *.do files. These ‘do’ files are

the make files for ModelSim. They tell the compiler which source

files to compile and allow compile time options.

 Verilog Programming Guide

3

• Sim – This folder contains special source files that have non-

synthesizeable constructs in them.

• Src – This folder contains all your source files. Only synthesizeable

code should go into this folder.

• Test – This folder contains source code for the models which are

used to model behavior of devices that are not part of the FPGA.

These source files can contain non-synthesizable code.

• Testbench -- This folder contains the main testbench source code.

The testbench controls the operation of the user source code, test

models and simulation code. It provides the main stimulus such as

the clock and reset.

In the src folder, create a file named “EPT_10M04_AF_S2_Top.v”.
Then open this file in an editor, I prefer to use NotePad++. Add in
the D flip-flop code and add comments to describe the file and the
parts of the file.

 Verilog Programming Guide

4

Next, setup the Testbench file to provide a stimulus for our user
code. The Testbench file provides all the hardware external devices
that the FPGA needs to operate the user code. These include the
oscillator/clock, reset, push buttons, communications, etc… Open
the Testbench folder and notice the two files in it.

 Verilog Programming Guide

5

• Tb_define.v contains pre-defined parameters for the testbench

execution

• Tb_ept_10m04_top.v contains declarations, stimulus, tasks and

leif modules to exercise the user code.

Inside the tb_ept_10m04_top.v file, we see ‘module’ declaration
along with the name of test bench. The parameter declarations are
listed to allow certain registers to have constant values. We will
discuss parameters and the details of the Verilog files later in the
tutorial. For now, we will focus on getting started and performing our
first simulation. Scroll down the testbench file and locate the
“Instantiate DUT” section.

 Verilog Programming Guide

6

You can see that the testbench uses the name of the module
declared in ‘EPT_10M04_AF_S2_TOP.v’. This is called the leif
instantiation. When ModelSIm starts the compilation process, it will
search the directory path for the module
‘EPT_10M04_AF_S2_TOP’. This instantiation must include the
inputs and outputs declared in the module. In this case:

• ‘d’ – Input into the D flip flop

• ‘clk’ – Input into the D flip flop

• ‘q’ – Output from the D flip flop

• ‘q_bar’ – Output from the D flip flop

Using the leif instantiation module, we have now connected the
testbench with the user code. When ModelSim starts the simulation
process, testbench will control the stimulus to the inputs and accept
the outputs from the user code.

 Verilog Programming Guide

7

To add stimulus, we use Verilog code. To add a clock, we use the
‘forever’ key word.

The parameter ‘CYCLE_50’ is defined in the tb_define.v file. We
add the ‘#’ character at the beginning of the line to inform the
compiler to “add the following” as a delay in simulator steps. During
simulation, the simulator will start a timer that halts this signal (and
only this signal) and waits for the timer to expire. After the delay has
expired, the signal is set equal to its complement state. Then,
because of the ‘forever’ keyword, the process starts over, delay,
then set signal to its complement. The result is a clock at 50MHz.
We will go through the details of all these details later in the tutorial.

 Verilog Programming Guide

8

Next, add the stimulus for ‘d’ input. We do this using the ‘initial’
block. Everything between the ‘begin’ ‘end’ keywords is executed
once per simulation.

 Verilog Programming Guide

9

You can see here that the stimulus ‘d’ is set to 1’b1 after a delay of
of 100 * CYCLE. Where ‘CYCLE’ is defined in the tb_define.v file.
Then, after another delay, the ‘d’ is set to 1’b0. Finally, a delay of
50*CYCLE is added then the ‘d’ is set to 1’b1. The result is a toggle
from high to low to high on the ‘d’ signal.

Next, get the ModelSim loaded up on your laptop/PC. Follow the
install guide on how to install the ModelSim application.

 Verilog Programming Guide

10

Then, open the application and Go to File->Change Directory

 Verilog Programming Guide

11

At the dialog box, locate the ModelSim folder under the
EPT_10M04_AF_S2_TOP project.

Select the ModelSim folder. Next, we will compile each module
individually. Click on the ‘Compile’ menu item. Select the ‘Compile’
tab.

In the ‘Compile Source Files’ window, select the ‘src’ folder.

 Verilog Programming Guide

12

Select the ‘EPT_10M04)AF_S2_Top.v’ file.

 Verilog Programming Guide

13

Click the ‘Compile’ button.

 Verilog Programming Guide

14

You will receive the ‘Create Library’ message box. Select Yes.

After the file is compiled, the log will indicate the status of
compilation.

 Verilog Programming Guide

15

Next, repeat the compile steps for the

• tb_define.v

• tb_ept_10m04_top.v

Note, you will not get receive the message box asking to create the

 Verilog Programming Guide

16

‘work’ folder this time. After the compilation has completed, we are
ready to run the Simulation. The simulation enviroment is controlled
by the *.do files. The *.do files act as makefiles to control which files
get simulated and add compile options. There are two *.do files
needed for our simulation. They are found in the ModelSim folder.

• Sim_ept10m04_top.do – Contains the files and compile options.

• Wave_ept_10m04_top.do – Contains the display flags for the

‘Waveforms’ window.

When we look inside the sim_ept_10m04_top.do file we see the two
files to simulate.

There are also simulate options that use the ‘+define’ keyword. At
the endof the file we see the ‘do wave_ept_10m04_top.do’
instruction. This will add the display flags to the ‘Waveforms’
window.

 Verilog Programming Guide

17

Start the simulation by typing do sim_ept_10m04_top.do into the
command window.

When the simulator completes its run, the Wave window appears.

Zoom into the first 10 microseconds of the simulation usin the Zoom

buttons.

 Verilog Programming Guide

18

Now we see the ‘d’ stimulus toggling and the ‘q’ output following the
input. Zoom in even farther.

 Verilog Programming Guide

19

We can see after first delay that ‘d’ signal is asserted high. Before
this assertion the signal is not defined in the simulation, so
technically it is a Don’t Care (indicated by the red ‘floating’ line).
Once the ‘d’ is asserted, the delay is added by the simulator. After
this delay the ‘d’ signal is de-asserted. Then, another dealy and the
‘d’ is asserted high.

Now that we know what the simulator is doing, we can exam the
user code, the D Flip Flop.

 Verilog Programming Guide

20

The D Flip Flop provides a registered output. This means that the
input ‘d’ will be applied to the output ‘q’ but only after one rising
edge of the clock. Because the output ‘q’ is synchronous to the
clock, it is called a synchronous register. We can really see what
this means when we zoom in even closer in the simulation.

Examining the user code, we can see this synchronous behavior
occuring because of the always statement.

 Verilog Programming Guide

21

The always keyword is used to cause a process to occur when an
event happens. The event is what is in the paranthesis. In this case,
the event is the rising edge of the ‘clk’ signal). Verilog uses the
‘posedge’ keyword to describe rising edge and ‘clk’ is our input
clock from the testbench. So, what the Verilog code is telling us is
that whenever we get a rising edge on the clock, the output ‘q’ is
equal to ‘d’. Also the ‘q_bar’ output is set to the complement of ‘d’.
This is exactly what the simluation is showing us.

We will cover the details of the Verilog keywords, description of
synchronous code and combinatorial code later in this tutorial. This
first lesson was designed to get you started with using ModelSim.

RTL DESCRIPTION

Many engineers who want to learn this language, very often ask this
question, how much time will it take to learn Verilog? Well my answer
to them is "It may take no more than one week, if you happen to
know at least one programming language".

 Design Styles

 Verilog, like any other hardware description language, permits a
design in either Bottom-up or Top-down methodology.

 Bottom-Up Design

The traditional method of electronic design is bottom-up. Each design
is performed at the gate-level using the standard gates (refer to the
Digital Section for more details). With the increasing complexity of
new designs this approach is nearly impossible to maintain. New
systems consist of ASIC or microprocessors with a complexity of
thousands of transistors. These traditional bottom-up designs have
to give way to new structural, hierarchical design methods. Without
these new practices it would be impossible to handle the new
complexity.

 Top-Down Design

 Verilog Programming Guide

22

The desired design-style of all designers is the top-down one. A real
top-down design allows early testing, easy change of different
technologies, a structured system design and offers many other
advantages. But it is very difficult to follow a pure top-down design.
Due to this fact most designs are a mix of both methods,
implementing some key elements of both design styles.

 Figure shows a Top-Down design approach.

 Verilog Abstraction Levels

 Verilog supports designing at many different levels of abstraction.
Three of them are very important:

• Behavioral level
• Register-Transfer Level
• Gate Level

 Verilog Programming Guide

23

 Behavioral level

This level describes a system by concurrent algorithms (Behavioral).
Each algorithm itself is sequential, that means it consists of a set of
instructions that are executed one after the other. Functions, Tasks
and Always blocks are the main elements. There is no regard to the
structural realization of the design.

 Register-Transfer Level

Designs using the Register-Transfer Level specify the characteristics
of a circuit by operations and the transfer of data between the
registers. An explicit clock is used. RTL design contains exact timing
bounds: operations are scheduled to occur at certain times. Modern
RTL code definition is "Any code that is synthesizable is called RTL
code".

 Gate Level

Within the logic level the characteristics of a system are described by
logical links and their timing properties. All signals are discrete
signals. They can only have definite logical values (`0', `1', `X', `Z`).
The usable operations are predefined logic primitives (AND, OR,
NOT etc gates). Using gate level modeling might not be a good idea
for any level of logic design. Gate level code is generated by tools
like synthesis tools and this netlist is used for gate level simulation
and for backend.

MODULES, PORTS, DATA TYPES AND

OPERATORS

Every new learner's dream is to understand Verilog in one day, at
least enough to use it. The next few pages are my attempt to make
this dream a reality. There will be some theory and examples
followed by some exercises. This tutorial will not teach you how to
program; it is designed for those with some programming
experience. Even though Verilog executes different code blocks
concurrently as opposed to the sequential execution of most
programming languages, there are still many parallels. Some
background in digital design is also helpful.

 Verilog Programming Guide

24

Life before Verilog was a life full of schematics. Every design,
regardless of complexity, was designed through schematics. They
were difficult to verify and error-prone, resulting in long, tedious
development cycles of design, verification... design, verification...
design, verification...

When Verilog arrived, we suddenly had a different way of thinking
about logic circuits. The Verilog design cycle is more like a
traditional programming one, and it is what this tutorial will walk you
through. Here's how it goes:

• Specifications (specs)
• High level design
• Low level (micro) design
• RTL coding
• Verification
• Synthesis.

First on the list is specifications - what are the restrictions and
requirements we will place on our design? What are we trying to
build? For this tutorial, we'll be building a two agent arbiter: a device
that selects among two agents competing for mastership. Here are
some specs we might write up.

• Two agent arbiter.
• Active high asynchronous reset.
• Fixed priority, with agent 0 having priority over agent 1
• Grant will be asserted as long as request is asserted.

Once we have the specs, we can draw the block diagram, which is
basically an abstraction of the data flow through a system (what
goes into or comes out of the black boxes?). Since the example
that we have taken is a simple one, we can have a block diagram
as shown below. We don't worry about what's inside the magical
black boxes just yet.

 Block diagram of arbiter

 Verilog Programming Guide

25

Now, if we were designing this machine without Verilog, the
standard procedure would dictate that we draw a state machine.
From there, we'd make a truth table with state transitions for each
flip-flop. And after that we'd draw Karnaugh maps, and from K-
maps we could get the optimized circuit. This method works just
fine for small designs, but with large designs this flow becomes
complicated and error prone. This is where Verilog comes in and
shows us another way.

 Low level design

To see how Verilog helps us design our arbiter, let's go on to our
state machine - now we're getting into the low-level design and
peeling away the cover of the previous diagram's black box to see
how our inputs affect the machine.

Each of the circles represents a state that the machine can be in.
Each state corresponds to an output. The arrows between the
states are state transitions, labeled by the event that causes the
transition. For instance, the leftmost orange arrow means that if the
machine is in state GNT0 (outputting the signal that corresponds to
GNT0) and receives an input of !req_0, the machine moves to state
IDLE and outputs the signal that corresponds to that. This state
machine describes all the logic of the system that you'll need. The
next step is to put it all in Verilog.

 Verilog Programming Guide

26

 Modules

We'll need to backtrack a bit to do this. If you look at the arbiter
block in the first picture, we can see that it has got a name ("arbiter")
and input/output ports (req_0, req_1, gnt_0, and gnt_1).

Since Verilog is a HDL (hardware description language - one used
for the conceptual design of integrated circuits), it also needs to
have these things. In Verilog, we call our "black boxes" module.
This is a reserved word within the program used to refer to things
with inputs, outputs, and internal logic workings; they're the rough
equivalents of functions with returns in other programming
languages.

 Code of module "arbiter"

If you look closely at the arbiter block we see that there are arrow
marks, (incoming for inputs and outgoing for outputs). In Verilog,
after we have declared the module name and port names, we can
define the direction of each port. (version note: In Verilog 2001 we
can define ports and port directions at the same time) The code for
this is shown below.

 1 module arbiter (

 2 // Two slashes make a comment line.

 3 clock , // clock

 4 reset , // Active high, syn reset

 5 req_0 , // Request 0

 6 req_1 , // Request 1

 7 gnt_0 , // Grant 0

 8 gnt_1 // Grant 1
 9);

 10 //-------------Input Ports-----------------------------

 11 // Note : all commands are semicolon-delimited

 12 input clock ;

 13 input reset ;

 14 input req_0 ;

 15 input req_1 ;

 16 //-------------Output Ports----------------------------

 17 output gnt_0 ;

 18 output gnt_1 ;

You could download file one_day1.v here

http://www.asic-world.com/code/verilog_tutorial/one_day1.v

 Verilog Programming Guide

27

Here we have only two types of ports, input and output. In real life,
we can have bi-directional ports as well. Verilog allows us to define
bi-directional ports as "inout."

 Bi-Directional Ports Example -

 inout read_enable; // port named read_enable is bi-directional

How do you define vector signals (signals composed of sequences
of more than one bit)? Verilog provides a simple way to define these
as well.

 Vector Signals Example -

 inout [7:0] address; //port "address" is bidirectional

Note the [7:0] means we're using the little-endian convention - you
start with 0 at the rightmost bit to begin the vector, then move to the
left. If we had done [0:7], we would be using the big-endian
convention and moving from left to right. Endianness is a purely
arbitrary way of deciding which way your data will "read," but does
differ between systems, so using the right endianness consistently
is important. As an analogy, think of some languages (English) that
are written left-to-right (big-endian) versus others (Arabic) written
right-to-left (little-endian). Knowing which way the language flows is
crucial to being able to read it, but the direction of flow itself was
arbitrarily set years back.

 Summary

• We learnt how a block/module is defined in Verilog.
• We learnt how to define ports and port directions.
• We learnt how to declare vector/scalar ports.

 Data Type

What do data types have to do with hardware? Nothing, actually.
People just wanted to write one more language that had data types
in it. It's completely gratuitous; there's no point.

 But wait... hardware does have two kinds of drivers.

 (Drivers? What are those?)

 Verilog Programming Guide

28

A driver is a data type which can drive a load. Basically, in a
physical circuit, a driver would be anything that electrons can move
through/into.

• Driver that can store a value (example: flip-flop).
• Driver that can not store value, but connects two points

(example: wire).

The first type of driver is called a reg in Verilog (short for "register").
The second data type is called a wire (for... well, "wire"). You can
refer to tidbits section to understand it better.

There are lots of other data types - for instance, registers can be
signed, unsigned, floating point... as a newbie, don't worry about
them right now.

 Examples :

 wire and_gate_output; // "and_gate_output" is a wire that only
outputs

 reg d_flip_flop_output; // "d_flip_flop_output" is a register; it stores
and outputs a value

 reg [7:0] address_bus; // "address_bus" is a little-endian 8-bit
register

 Summary

• Wire data type is used for connecting two points.
• Reg data type is used for storing values.
• May god bless the rest of data types. You'll see them

someday.

 Operators

Operators, thankfully, are the same things here as they are in other
programming languages. They take two values and compare (or
otherwise operate on) them to yield a third result - common
examples are addition, equals, logical-and... To make life easier for
us, nearly all operators (at least the ones in the list below) are
exactly the same as their counterparts in the C programming
language.

 Verilog Programming Guide

29

Operator Type Operator Symbol Operation Performed

Arithmetic * Multiply
 / Division
 + Add
 - Subtract
 % Modulus
 + Unary plus
 - Unary minus

Logical ! Logical negation
 && Logical and
 || Logical or

Relational > Greater than
 < Less than
 >= Greater than or equal
 <= Less than or equal

Equality == Equality
 != inequality

Reduction ~ Bitwise negation
 ~& nand
 | or
 ~| nor
 ^ xor
 ^~ xnor
 ~^ xnor

Shift >> Right shift
 << Left shift

Concatenation { } Concatenation

Conditional ? conditional

//////////////////////////////////////Lesson #2///

In this first lesson, we will use some operators in Verilog code.

 Verilog Programming Guide

30

First, lets write some user code exercise the operators.

 Example -

• a = b + c ; // That was very easy
• a = 1 << 5; // Hum let me think, ok shift '1' left by 5

positions.
• a = !b ; // Well does it invert b???
• a = ~b ; // How many times do you want to assign to 'a', it

could cause multiple-drivers.

 Summary

• Let's attend the C language training again, they're (almost)

just like the C ones.

CONTROL STATEMENTS

Wait, what's this? if, else, repeat, while, for, case - it's Verilog that
looks exactly like C (and probably whatever other language you're
used to program in)! Even though the functionality appears to be the
same as in C, Verilog is an HDL, so the descriptions should translate
to hardware. This means you've got to be careful when using control
statements (otherwise your designs might not be implementable in
hardware).

 If-else

If-else statements check a condition to decide whether or not to
execute a portion of code. If a condition is satisfied, the code is
executed. Else, it runs this other portion of code.

 1 // begin and end act like curly braces in C/C++.

 2 if (enable == 1'b1) begin

 3 data = 10; // Decimal assigned

 4 address = 16'hDEAD; // Hexadecimal

 5 wr_enable = 1'b1; // Binary

 6 end else begin

 7 data = 32'b0;

 8 wr_enable = 1'b0;

 9 address = address + 1;

 Verilog Programming Guide

31

 10 end

You could download file one_day2.v here

One could use any operator in the condition checking, as in the case
of C language. If needed we can have nested if else statements;
statements without else are also ok, but they have their own
problem, when modeling combinational logic, in case they result in
a Latch (this is not always true).

 Case

Case statements are used where we have one variable which needs
to be checked for multiple values. like an address decoder, where
the input is an address and it needs to be checked for all the values
that it can take. Instead of using multiple nested if-else statements,
one for each value we're looking for, we use a single case statement:
this is similar to switch statements in languages like C++.

Case statements begin with the reserved word case and end with
the reserved word endcase (Verilog does not use brackets to
delimit blocks of code). The cases, followed with a colon and the
statements you wish executed, are listed within these two delimiters.
It's also a good idea to have a default case. Just like with a finite
state machine (FSM), if the Verilog machine enters into a non-
covered statement, the machine hangs. Defaulting the statement
with a return to idle keeps us safe.

 1 case(address)

 2 0 : $display ("It is 11:40PM");

 3 1 : $display ("I am feeling sleepy");

 4 2 : $display ("Let me skip this tutorial");

 5 default : $display ("Need to complete");

 6 endcase

You could download file one_day3.v here

 Looks like the address value was 3 and so I am still writing this
tutorial.

Note: One thing that is common to if-else and case statement is that,
if you don't cover all the cases (don't have 'else' in If-else or 'default'
in Case), and you are trying to write a combinational statement, the
synthesis tool will infer Latch.

 While

http://www.asic-world.com/code/verilog_tutorial/one_day2.v
http://www.asic-world.com/code/verilog_tutorial/one_day3.v

 Verilog Programming Guide

32

A while statement executes the code within it repeatedly if the
condition it is assigned to check returns true. While loops are not
normally used for models in real life, but they are used in test
benches. As with other statement blocks, they are delimited by begin
and end.

 1 while (free_time) begin

 2 $display ("Continue with webpage development");

 3 end

You could download file one_day4.v here

As long as free_time variable is set, code within the begin and end
will be executed. i.e print "Continue with web development". Let's
looks at a stranger example, which uses most of Verilog constructs.
Well, you heard it right. Verilog has fewer reserved words than
VHDL, and in this few, we use even lesser for actual coding. So good
of Verilog... so right.

 1 module counter (clk,rst,enable,count);

 2 input clk, rst, enable;

 3 output [3:0] count;

 4 reg [3:0] count;
 5

 6 always @ (posedge clk or posedge rst)

 7 if (rst) begin

 8 count <= 0;

 9 end else begin : COUNT

 10 while (enable) begin

 11 count <= count + 1;

 12 disable COUNT;

 13 end

 14 end
 15

 16 endmodule

You could download file one_day5.v here

The example above uses most of the constructs of Verilog. You'll
notice a new block called always - this illustrates one of the key
features of Verilog. Most software languages, as we mentioned
before, execute sequentially - that is, statement by statement.
Verilog programs, on the other hand, often have many statements
executing in parallel. All blocks marked always will run -
simultaneously - when one or more of the conditions listed within it
is fulfilled.

http://www.asic-world.com/code/verilog_tutorial/one_day4.v
http://www.asic-world.com/code/verilog_tutorial/one_day5.v

 Verilog Programming Guide

33

In the example above, the always block will run when either rst or
clk reaches a positive edge - that is, when their value has risen
from 0 to 1. You can have two or more always blocks in a program
going at the same time (not shown here, but commonly used).

We can disable a block of code, by using the reserve word disable.
In the above example, after each counter increment, the COUNT
block of code (not shown here) is disabled.

 For loop

For loops in Verilog are almost exactly like for loops in C or C++.
The only difference is that the ++ and -- operators are not supported
in Verilog. Instead of writing i++ as you would in C, you need to write
out its full operational equivalent, i = i + 1.

 1 for (i = 0; i < 16; i = i +1) begin

 2 $display ("Current value of i is %d", i);

 3 end

You could download file one_day6.v here

This code will print the numbers from 0 to 15 in order. Be careful
when using for loops for register transfer logic (RTL) and make sure
your code is actually sanely implementable in hardware... and that
your loop is not infinite.

 Repeat

Repeat is similar to the for loop we just covered. Instead of explicitly
specifying a variable and incrementing it when we declare the for
loop, we tell the program how many times to run through the code,
and no variables are incremented (unless we want them to be, like
in this example).

 1 repeat (16) begin

 2 $display ("Current value of i is %d", i);

 3 i = i + 1;

 4 end

You could download file one_day7.v here

http://www.asic-world.com/code/verilog_tutorial/one_day6.v
http://www.asic-world.com/code/verilog_tutorial/one_day7.v

 Verilog Programming Guide

34

The output is exactly the same as in the previous for-loop program
example. It is relatively rare to use a repeat (or for-loop) in actual
hardware implementation.

 Summary

• While, if-else, case(switch) statements are the same as in C
language.

• If-else and case statements require all the cases to be
covered for combinational logic.

• For-loop is the same as in C, but no ++ and -- operators.
• Repeat is the same as the for-loop but without the

incrementing variable.

 Variable Assignment

In digital there are two types of elements, combinational and
sequential. Of course we know this. But the question is "How do we
model this in Verilog ?". Well Verilog provides two ways to model the
combinational logic and only one way to model sequential logic.

• Combinational elements can be modeled using assign and
always statements.

• Sequential elements can be modeled using only always
statement.

• There is a third block, which is used in test benches only: it
is called Initial statement.

 Initial Blocks

An initial block, as the name suggests, is executed only once when
simulation starts. This is useful in writing test benches. If we have
multiple initial blocks, then all of them are executed at the beginning
of simulation.

 Example

 1 initial begin

 2 clk = 0;

 3 reset = 0;

 4 req_0 = 0;

 5 req_1 = 0;

 6 end

You could download file one_day8.v here

http://www.asic-world.com/code/verilog_tutorial/one_day8.v

 Verilog Programming Guide

35

 In the above example, at the beginning of simulation, (i.e. when time
= 0), all the variables inside the begin and end block are driven zero.

 Always Blocks

As the name suggests, an always block executes always, unlike initial
blocks which execute only once (at the beginning of simulation). A
second difference is that an always block should have a sensitive list
or a delay associated with it.

The sensitive list is the one which tells the always block when to
execute the block of code, as shown in the figure below. The @ symbol
after reserved word ' always', indicates that the block will be triggered
"at" the condition in parenthesis after symbol @.

 One important note about always block: it can not drive wire data type,
but can drive reg and integer data types.

 1 always @ (a or b or sel)

 2 begin

 3 y = 0;

 4 if (sel == 0) begin

 5 y = a;

 6 end else begin

 7 y = b;

 8 end

 9 end

You could download file one_day9.v here

The above example is a 2:1 mux, with input a and b; sel is the select
input and y is the mux output. In any combinational logic, output
changes whenever input changes. This theory when applied to always
blocks means that the code inside always blocks needs to be executed
whenever the input variables (or output controlling variables) change.
These variables are the ones included in the sensitive list, namely a, b
and sel.

There are two types of sensitive list: level sensitive (for combinational
circuits) and edge sensitive (for flip-flops). The code below is the same
2:1 Mux but the output y is now a flip-flop output.

http://www.asic-world.com/code/verilog_tutorial/one_day9.v

 Verilog Programming Guide

36

 1 always @ (posedge clk)

 2 if (reset == 0) begin

 3 y <= 0;

 4 end else if (sel == 0) begin

 5 y <= a;

 6 end else begin

 7 y <= b;

 8 end

You could download file one_day10.v here

We normally have to reset flip-flops, thus every time the clock makes
the transition from 0 to 1 (posedge), we check if reset is asserted
(synchronous reset), then we go on with normal logic. If we look closely
we see that in the case of combinational logic we had "=" for
assignment, and for the sequential block we had the "<=" operator.
Well, "=" is blocking assignment and "<=" is nonblocking assignment.
"=" executes code sequentially inside a begin / end, whereas
nonblocking "<=" executes in parallel.

 We can have an always block without sensitive list, in this case we
need to have a delay as shown in the code below.

 1 always begin

 2 #5 clk = ~clk;

 3 end

You could download file one_day11.v here

 #5 in front of the statement delays its execution by 5 time units.

 Assign Statement

An assign statement is used for modeling only combinational logic and
it is executed continuously. So the assign statement is called
'continuous assignment statement' as there is no sensitive list.

 1 assign out = (enable) ? data : 1'bz;

You could download file one_day12.v here

The above example is a tri-state buffer. When enable is 1, data is
driven to out, else out is pulled to high-impedance. We can have
nested conditional operators to construct mux, decoders and
encoders.

http://www.asic-world.com/code/verilog_tutorial/one_day10.v
http://www.asic-world.com/code/verilog_tutorial/one_day11.v
http://www.asic-world.com/code/verilog_tutorial/one_day12.v

 Verilog Programming Guide

37

 1 assign out = data;

You could download file one_day13.v here

 This example is a simple buffer.

Task and Function

When repeating the same old things again and again, Verilog, like any
other programming language, provides means to address repeated
used code, these are called Tasks and Functions. I wish I had
something similar for webpages, just call it to print this programming
language stuff again and again.

 Code below is used for calculating even parity.

 1 function parity;

 2 input [31:0] data;

 3 integer i;

 4 begin

 5 parity = 0;

 6 for (i= 0; i < 32; i = i + 1) begin

 7 parity = parity ^ data[i];

 8 end

 9 end

 10 endfunction

You could download file one_day14.v here

Functions and tasks have the same syntax; one difference is that tasks
can have delays, whereas functions can not have any delay. This
means that function can be used for modeling combinational logic.

 A second difference is that functions can return a value, whereas tasks
can not.

TEST BENCHES

 Ok, we have code written according to the design document, now
what?

 Well we need to test it to see if it works according to specs. Most of
the time, it's the same we use to do in digital labs in college days: drive

http://www.asic-world.com/code/verilog_tutorial/one_day13.v
http://www.asic-world.com/code/verilog_tutorial/one_day14.v

 Verilog Programming Guide

38

the inputs, match the outputs with expected values. Let's look at the
arbiter testbench.

 1 module arbiter (
 2 clock,

 3 reset,

 4 req_0,

 5 req_1,

 6 gnt_0,

 7 gnt_1

 8);

 9

 10 input clock, reset, req_0, req_1;

 11 output gnt_0, gnt_1;
 12

 13 reg gnt_0, gnt_1;
 14

 15 always @ (posedge clock or posedge reset)

 16 if (reset) begin

 17 gnt_0 <= 0;

 18 gnt_1 <= 0;

 19 end else if (req_0) begin

 20 gnt_0 <= 1;

 21 gnt_1 <= 0;

 22 end else if (req_1) begin

 23 gnt_0 <= 0;

 24 gnt_1 <= 1;

 25 end
 26

 27 endmodule

 28 // Testbench Code Goes here

 29 module arbiter_tb;
 30

 31 reg clock, reset, req0,req1;

 32 wire gnt0,gnt1;
 33

 34 initial begin

 35 $monitor ("req0=%b,req1=%b,gnt0=%b,gnt1=%b",
req0,req1,gnt0,gnt1);

 36 clock = 0;

 37 reset = 0;

 38 req0 = 0;

 39 req1 = 0;

 40 #5 reset = 1;

 41 #15 reset = 0;

 42 #10 req0 = 1;

 43 #10 req0 = 0;

 44 #10 req1 = 1;

 Verilog Programming Guide

39

 45 #10 req1 = 0;

 46 #10 {req0,req1} = 2'b11;

 47 #10 {req0,req1} = 2'b00;

 48 #10 $finish;

 49 end
 50

 51 always begin

 52 #5 clock = ! clock;

 53 end
 54

 55 arbiter U0 (

 56 .clock (clock),

 57 .reset (reset),

 58 .req_0 (req0),

 59 .req_1 (req1),

 60 .gnt_0 (gnt0),

 61 .gnt_1 (gnt1)

 62);

 63

 64 endmodule

You could download file arbiter.v here

It looks like we have declared all the arbiter inputs as reg and outputs
as wire; well, that's true. We are doing this as test bench needs to
drive inputs and needs to monitor outputs.

After we have declared all needed variables, we initialize all the inputs
to known state: we do that in the initial block. After initialization, we
assert/de-assert reset, req0, req1 in the sequence we want to test the
arbiter. Clock is generated with an always block.

After we are done with the testing, we need to stop the simulator. Well,
we use $finish to terminate simulation. $monitor is used to monitor the
changes in the signal list and print them in the format we want.

 req0=0,req1=0,gnt0=x,gnt1=x
 req0=0,req1=0,gnt0=0,gnt1=0
 req0=1,req1=0,gnt0=0,gnt1=0
 req0=1,req1=0,gnt0=1,gnt1=0
 req0=0,req1=0,gnt0=1,gnt1=0
 req0=0,req1=1,gnt0=1,gnt1=0
 req0=0,req1=1,gnt0=0,gnt1=1
 req0=0,req1=0,gnt0=0,gnt1=1
 req0=1,req1=1,gnt0=0,gnt1=1
 req0=1,req1=1,gnt0=1,gnt1=0
 req0=0,req1=0,gnt0=1,gnt1=0

Introduction

http://www.asic-world.com/code/verilog_tutorial/arbiter.v

 Verilog Programming Guide

40

Being new to Verilog you might want to try some examples and try
designing something new. I have listed the tool flow that could be
used to achieve this. I have personally tried this flow and found this
to be working just fine for me. Here I have taken only the front end
design part and bits of FPGA design of the tool flow, that can be done
without any fat money spent on tools.

Various stages of ASIC/FPGA

• Specification : Word processor like Word, Kwriter, AbiWord,
Open Office.

• High Level Design : Word processor like Word, Kwriter,
AbiWord, for drawing waveform use tools like waveformer or
testbencher or Word, Open Office.

• Micro Design/Low level design: Word processor like Word,
Kwriter, AbiWord, for drawing waveform use tools like
waveformer or testbencher or Word.

• RTL Coding : Vim, Emacs, conTEXT, HDL TurboWriter
• Simulation : Modelsim, VCS, Verilog-XL, Veriwell, Finsim,

Icarus.
• Synthesis : Design Compiler, FPGA Compiler, Synplify,

Leonardo Spectrum. You can download this from FPGA
vendors like Altera and Xilinx for free.

• Place & Route : For FPGA use FPGA' vendors P&R tool.
ASIC tools require expensive P&R tools like Apollo. Students
can use LASI, Magic.

• Post Si Validation : For ASIC and FPGA, the chip needs to
be tested in real environment. Board design, device drivers
needs to be in place.

Figure : Typical Design flow

 Verilog Programming Guide

41

Specification

This is the stage at which we define what are the important
parameters of the system/design that you are planning to design. A
simple example would be: I want to design a counter; it should be 4
bit wide, should have synchronous reset, with active high enable;
when reset is active, counter output should go to "0".

High Level Design

This is the stage at which you define various blocks in the design and
how they communicate. Let's assume that we need to design a
microprocessor: high level design means splitting the design into
blocks based on their function; in our case the blocks are registers,
ALU, Instruction Decode, Memory Interface, etc.

 Verilog Programming Guide

42

 Figure : I8155 High Level Block Diagram

Micro Design/Low level design

Low level design or Micro design is the phase in which the designer
describes how each block is implemented. It contains details of State
machines, counters, Mux, decoders, internal registers. It is always a
good idea to draw waveforms at various interfaces. This is the phase
where one spends lot of time.

 Figure : Sample Low level design

RTL Coding

In RTL coding, Micro design is converted into Verilog/VHDL code,
using synthesizable constructs of the language. Normally we like to
lint the code, before starting verification or synthesis.

 1 module addbit (

 Verilog Programming Guide

43

 2 a , // first input

 3 b , // Second input

 4 ci , // Carry input

 5 sum , // sum output

 6 co // carry output
 7);

 8 //Input declaration

 9 input a;

 10 input b;

 11 input ci;

 12 //Ouput declaration

 13 output sum;

 14 output co;

 15 //Port Data types

 16 wire a;

 17 wire b;

 18 wire ci;

 19 wire sum;

 20 wire co;

 21 //Code starts here

 22 assign {co,sum} = a + b + ci;
 23

 24 endmodule // End of Module addbit

You could download file addbit.v here

Simulation

Simulation is the process of verifying the functional characteristics of
models at any level of abstraction. We use simulators to simulate the
Hardware models. To test if the RTL code meets the functional
requirements of the specification, we must see if all the RTL blocks
are functionally correct. To achieve this we need to write a testbench,
which generates clk, reset and the required test vectors. A sample
testbench for a counter is shown below. Normally we spend 60-70%
of time in design verification.

http://www.asic-world.com/code/verilog_tutorial/addbit.v

 Verilog Programming Guide

44

 Figure : Sample Testbench Env

We use the waveform output from the simulator to see if the DUT
(Device Under Test) is functionally correct. Most of the simulators
come with a waveform viewer. As design becomes complex, we write
self checking testbench, where testbench applies the test vector, then
compares the output of DUT with expected values.

There is another kind of simulation, called timing simulation, which
is done after synthesis or after P&R (Place and Route). Here we
include the gate delays and wire delays and see if DUT works at rated
clock speed. This is also called as SDF simulation or gate level
simulation.

 Figure : 4 bit Up Counter Waveform

 Synthesis

Synthesis is the process in which synthesis tools like design compiler
or Synplify take RTL in Verilog or VHDL, target technology, and
constrains as input and maps the RTL to target technology primitives.
Synthesis tool, after mapping the RTL to gates, also do the minimal
amount of timing analysis to see if the mapped design is meeting the
timing requirements. (Important thing to note is, synthesis tools are
not aware of wire delays, they only know of gate delays). After the
synthesis there are a couple of things that are normally done before
passing the netlist to backend (Place and Route)

• Formal Verification : Check if the RTL to gate mapping is
correct.

• Scan insertion : Insert the scan chain in the case of ASIC.

 Verilog Programming Guide

45

 Figure : Synthesis Flow

 Place & Route

The gatelevel netlist from the synthesis tool is taken and imported into
place and route tool in Verilog netlist format. All the gates and flip-
flops are placed; clock tree synthesis and reset is routed. After this
each block is routed. The P&R tool output is a GDS file, used by
foundry for fabricating the ASIC. Backend team normally dumps out
SPEF (standard parasitic exchange format) /RSPF (reduced parasitic
exchange format)/DSPF (detailed parasitic exchange format) from
layout tools like ASTRO to the frontend team, who then use the
read_parasitic command in tools like Prime Time to write out SDF
(standard delay format) for gate level simulation purposes.

 Figure : Sample micro-processor placement

 Verilog Programming Guide

46

 Figure : J-K Flip-Flop

 Post Silicon Validation

Once the chip (silicon) is back from fab, it needs to be put in a real
environment and tested before it can be released into Market. Since
the simulation speed (number of clocks per second) with RTL is very
slow, there is always the possibility to find a bug in Post silicon
validation.

Introduction

If you refer to any book on programming languages, it starts with an
"Hello World" program; once you have written it, you can be sure that

you can do something in that language .

 Well I am also going to show how to write a "hello world" program,
followed by a "counter" design, in Verilog.

Hello World Program

 1 //---

 2 // This is my first Verilog Program

 3 // Design Name : hello_world

 4 // File Name : hello_world.v

 Verilog Programming Guide

47

 5 // Function : This program will print 'hello world'

 6 // Coder : Deepak

 7 //---

 8 module hello_world ;
 9

 10 initial begin

 11 $display ("Hello World by Deepak");

 12 #10 $finish;

 13 end
 14

 15 endmodule // End of Module hello_world

You could download file hello_world.v here

Words in green are comments, blue are reserved words. Any program
in Verilog starts with reserved word 'module' <module_name>. In the
above example line 8 contains module hello_world. (Note: We can
have compiler pre-processor statements like `include', `define' before
module declaration)

Line 10 contains the initial block: this block gets executed only once
after the simulation starts, at time=0 (0ns). This block contains two
statements which are enclosed within begin, at line 10, and end, at
line 13. In Verilog, if you have multiple lines within a block, you need
to use begin and end. Module ends with 'endmodule' reserved word,
in this case at line 15.

 Hello World Program Output

 Hello World by Deepak

 Counter Design Block

 Counter Design Specs

 • 4-bit synchronous up counter.

http://www.asic-world.com/code/verilog_tutorial/hello_world.v

 Verilog Programming Guide

48

• active high, synchronous reset.
• Active high enable.

 Counter Design

 1 //---

 2 // This is my second Verilog Design

 3 // Design Name : first_counter

 4 // File Name : first_counter.v

 5 // Function : This is a 4 bit up-counter with

 6 // Synchronous active high reset and

 7 // with active high enable signal

 8 //---

 9 module first_counter (

 10 clock , // Clock input of the design

 11 reset , // active high, synchronous Reset input

 12 enable , // Active high enable signal for counter

 13 counter_out // 4 bit vector output of the counter

 14); // End of port list

 15 //-------------Input Ports-----------------------------

 16 input clock ;

 17 input reset ;

 18 input enable ;

 19 //-------------Output Ports----------------------------

 20 output [3:0] counter_out ;

 21 //-------------Input ports Data Type-------------------

 22 // By rule all the input ports should be wires

 23 wire clock ;

 24 wire reset ;

 25 wire enable ;

 26 //-------------Output Ports Data Type------------------

 27 // Output port can be a storage element (reg) or a wire

 28 reg [3:0] counter_out ;
 29

 30 //------------Code Starts Here-------------------------

 31 // Since this counter is a positive edge trigged one,

 32 // We trigger the below block with respect to positive

 33 // edge of the clock.

 34 always @ (posedge clock)

 35 begin : COUNTER // Block Name

 36 // At every rising edge of clock we check if reset is active

 37 // If active, we load the counter output with 4'b0000

 38 if (reset == 1'b1) begin

 39 counter_out <= #1 4'b0000;

 40 end

 Verilog Programming Guide

49

 41 // If enable is active, then we increment the counter

 42 else if (enable == 1'b1) begin

 43 counter_out <= #1 counter_out + 1;

 44 end

 45 end // End of Block COUNTER
 46

 47 endmodule // End of Module counter

You could download file first_counter.v here

 Counter Test Bench

Any digital circuit, no matter how complex, needs to be tested. For the
counter logic, we need to provide clock and reset logic. Once the
counter is out of reset, we toggle the enable input to the counter, and
check the waveform to see if the counter is counting correctly. This is
done in Verilog.

The counter testbench consists of clock generator, reset control,
enable control and monitor/checker logic. Below is the simple code of
testbench without the monitor/checker logic.

 1 `include "first_counter.v"

 2 module first_counter_tb();

 3 // Declare inputs as regs and outputs as wires

 4 reg clock, reset, enable;

 5 wire [3:0] counter_out;
 6

 7 // Initialize all variables

 8 initial begin

 9 $display ("time\t clk reset enable counter");

 10 $monitor ("%g\t %b %b %b %b",

 11 $time, clock, reset, enable, counter_out);

 12 clock = 1; // initial value of clock

 13 reset = 0; // initial value of reset

http://www.asic-world.com/code/verilog_tutorial/first_counter.v

 Verilog Programming Guide

50

 14 enable = 0; // initial value of enable

 15 #5 reset = 1; // Assert the reset

 16 #10 reset = 0; // De-assert the reset

 17 #10 enable = 1; // Assert enable

 18 #100 enable = 0; // De-assert enable

 19 #5 $finish; // Terminate simulation

 20 end
 21

 22 // Clock generator

 23 always begin

 24 #5 clock = ~clock; // Toggle clock every 5 ticks

 25 end
 26

 27 // Connect DUT to test bench
 28 first_counter U_counter (

 29 clock,

 30 reset,

 31 enable,

 32 counter_out

 33);

 34

 35 endmodule

You could download file first_counter_tb.v here

 time clk reset enable counter
 0 1 0 0 xxxx
 5 0 1 0 xxxx
 10 1 1 0 xxxx
 11 1 1 0 0000
 15 0 0 0 0000
 20 1 0 0 0000
 25 0 0 1 0000
 30 1 0 1 0000
 31 1 0 1 0001
 35 0 0 1 0001
 40 1 0 1 0001
 41 1 0 1 0010
 45 0 0 1 0010
 50 1 0 1 0010
 51 1 0 1 0011
 55 0 0 1 0011
 60 1 0 1 0011
 61 1 0 1 0100
 65 0 0 1 0100
 70 1 0 1 0100
 71 1 0 1 0101
 75 0 0 1 0101
 80 1 0 1 0101
 81 1 0 1 0110
 85 0 0 1 0110

http://www.asic-world.com/code/verilog_tutorial/first_counter_tb.v

 Verilog Programming Guide

51

 90 1 0 1 0110
 91 1 0 1 0111
 95 0 0 1 0111
 100 1 0 1 0111
 101 1 0 1 1000
 105 0 0 1 1000
 110 1 0 1 1000
 111 1 0 1 1001
 115 0 0 1 1001
 120 1 0 1 1001
 121 1 0 1 1010
 125 0 0 0 1010

Counter Waveform

Lexical
Conventions

The basic lexical conventions used by Verilog HDL are similar to
those in the C programming language. Verilog HDL is a case-
sensitive language. All keywords are in lowercase.

White Space

White space can contain the characters for blanks, tabs, newlines,
and form feeds. These characters are ignored except when they
serve to separate other tokens. However, blanks and tabs are
significant in strings.

 White space characters are :

• Blank spaces
• Tabs
• Carriage returns
• New-line
• Form-feeds

 Verilog Programming Guide

52

Examples of White Spaces

 Functional Equivalent Code

 Bad Code : Never write code like this.

 1 module addbit(a,b,ci,sum,co);

 2 input a,b,ci;output sum co;

 3 wire a,b,ci,sum,co;endmodule

You could download file bad_code.v here

 Good Code : Nice way to write code.

 1 module addbit (
 2 a,

 3 b,

 4 ci,

 5 sum,

 6 co);

 7 input a;

 8 input b;

 9 input ci;

 10 output sum;

 11 output co;

 12 wire a;

 13 wire b;

 14 wire ci;

 15 wire sum;

 16 wire co;
 17

 18 endmodule

You could download file good_code.v here

Comments
 There are two forms to introduce comments.

• Single line comments begin with the token // and end with a
carriage return

• Multi line comments begin with the token /* and end with the
token */

Examples of Comments

http://www.asic-world.com/code/verilog_tutorial/bad_code.v
http://www.asic-world.com/code/verilog_tutorial/good_code.v

 Verilog Programming Guide

53

 1 /* This is a
 2 Multi line comment

 3 example */

 4 module addbit (
 5 a,

 6 b,

 7 ci,

 8 sum,

 9 co);

 10

 11 // Input Ports Single line comment

 12 input a;

 13 input b;

 14 input ci;

 15 // Output ports

 16 output sum;

 17 output co;

 18 // Data Types

 19 wire a;

 20 wire b;

 21 wire ci;

 22 wire sum;

 23 wire co;
 24

 25 endmodule

You could download file comment.v here

Case Sensitivity
 Verilog HDL is case sensitive

• Lower case letters are unique from upper case letters
• All Verilog keywords are lower case

Examples of Unique names

 1 input // a Verilog Keyword

 2 wire // a Verilog Keyword

 3 WIRE // a unique name (not a keyword)

 4 Wire // a unique name (not a keyword)

You could download file unique_names.v here

 NOTE : Never use Verilog keywords as unique names, even if the
case is different.

http://www.asic-world.com/code/verilog_tutorial/comment.v
http://www.asic-world.com/code/verilog_tutorial/unique_names.v

 Verilog Programming Guide

54

Identifiers

Identifiers are names used to give an object, such as a register or a
function or a module, a name so that it can be referenced from other
places in a description.

• Identifiers must begin with an alphabetic character or the
underscore character (a-z A-Z _)

• Identifiers may contain alphabetic characters, numeric
characters, the underscore, and the dollar sign (a-z A-Z 0-9
_ $)

• Identifiers can be up to 1024 characters long.

Examples of legal identifiers
 data_input mu
 clk_input my$clk
 i386 A

Escaped Identifiers

Verilog HDL allows any character to be used in an identifier by
escaping the identifier. Escaped identifiers provide a means of
including any of the printable ASCII characters in an identifier (the
decimal values 33 through 126, or 21 through 7E in hexadecimal).

• Escaped identifiers begin with the back slash (\)
• Entire identifier is escaped by the back slash.
• Escaped identifier is terminated by white space (Characters

such as commas, parentheses, and semicolons become part
of the escaped identifier unless preceded by a white space)

• Terminate escaped identifiers with white space, otherwise
characters that should follow the identifier are considered as
part of it.

Examples of escape identifiers

Verilog does not allow to identifier to start with a numeric character.
So if you really want to use a identifier to start with a numeric value
then use a escape character as shown below.

 1 // There must be white space after the

 Verilog Programming Guide

55

 2 // string which uses escape character

 3 module \1dff (

 4 q, // Q output

 5 \q~ , // Q_out output

 6 d, // D input

 7 cl$k, // CLOCK input

 8 \reset* // Reset input
 9);

 10

 11 input d, cl$k, \reset* ;

 12 output q, \q~ ;
 13

 14 endmodule

You could download file escape_id.v here

Numbers in Verilog

You can specify constant numbers in decimal, hexadecimal, octal, or
binary format. Negative numbers are represented in 2's complement
form. When used in a number, the question mark (?) character is the
Verilog alternative for the z character. The underscore character (_)
is legal anywhere in a number except as the first character, where it
is ignored.

Integer Numbers
 Verilog HDL allows integer numbers to be specified as

• Sized or unsized numbers (Unsized size is 32 bits)
• In a radix of binary, octal, decimal, or hexadecimal
• Radix and hex digits (a,b,c,d,e,f) are case insensitive
• Spaces are allowed between the size, radix and value

• Syntax: <size>'<radix><value>;

Example of Integer Numbers

Integer Stored as

1 00000000000000000000000000000001

8'hAA 10101010

6'b10_0011 100011

'hF 00000000000000000000000000001111

 Verilog expands <value> filling the specified <size> by working from
right-to-left

http://www.asic-world.com/code/verilog_tutorial/escape_id.v

 Verilog Programming Guide

56

• When <size> is smaller than <value>, then leftmost bits of
<value> are truncated

• When <size> is larger than <value>, then leftmost bits are
filled, based on the value of the leftmost bit in <value>.

o Leftmost '0' or '1' are filled with '0'
o Leftmost 'Z' are filled with 'Z'
o Leftmost 'X' are filled with 'X'

 Note : X Stands for unknown and Z stands for high impedance, 1 for
logic high or 1 and 0 for logic low or 0.

Example of Integer Numbers

Integer Stored as

6'hCA 001010

6'hA 001010

16'bZ ZZZZZZZZZZZZZZZZ

8'bx xxxxxxxx

Real Numbers

• Verilog supports real constants and variables
• Verilog converts real numbers to integers by rounding
• Real Numbers can not contain 'Z' and 'X'
• Real numbers may be specified in either decimal or scientific

notation
• < value >.< value >
• < mantissa >E< exponent >
• Real numbers are rounded off to the nearest integer when

assigning to an integer.

Example of Real Numbers

Real Number Decimal notation

1.2 1.2

0.6 0.6

3.5E6 3,500000.0

 Verilog Programming Guide

57

Signed and Unsigned Numbers

Verilog Supports both types of numbers, but with certain restrictions.
Like in C language we don't have int and unint types to say if a
number is signed integer or unsigned integer.

 Any number that does not have negative sign prefix is a positive
number. Or indirect way would be "Unsigned".

Negative numbers can be specified by putting a minus sign before
the size for a constant number, thus they become signed numbers.
Verilog internally represents negative numbers in 2's complement
format. An optional signed specifier can be added for signed
arithmetic.

Examples

Number Description

32'hDEAD_BEEF Unsigned or signed positive number

-14'h1234 Signed negative number

 The example file below shows how Verilog treats signed and
unsigned numbers.

 1 module signed_number;
 2

 3 reg [31:0] a;
 4

 5 initial begin

 6 a = 14'h1234;

 7 $display ("Current Value of a = %h", a);

 8 a = -14'h1234;

 9 $display ("Current Value of a = %h", a);

 10 a = 32'hDEAD_BEEF;

 11 $display ("Current Value of a = %h", a);

 12 a = -32'hDEAD_BEEF;

 13 $display ("Current Value of a = %h", a);

 14 #10 $finish;

 15 end
 16

 17 endmodule

You could download file signed_number.v here

 Current Value of a = 00001234

http://www.asic-world.com/code/verilog_tutorial/signed_number.v

 Verilog Programming Guide

58

 Current Value of a = ffffedcc
 Current Value of a = deadbeef
 Current Value of a = 21524111

Modules

• Modules are the building blocks of Verilog designs
• You create the design hierarchy by instantiating modules in

other modules.
• You instance a module when you use that module in another,

higher-level module.

Ports

• Ports allow communication between a module and its
environment.

• All but the top-level modules in a hierarchy have ports.
• Ports can be associated by order or by name.

 You declare ports to be input, output or inout. The port declaration syntax
is :

 input [range_val:range_var] list_of_identifiers;
 output [range_val:range_var] list_of_identifiers;

 Verilog Programming Guide

59

 inout [range_val:range_var] list_of_identifiers;

 NOTE : As a good coding practice, there should be only one port
identifier per line, as shown below

Examples : Port Declaration

 1 input clk ; // clock input

 2 input [15:0] data_in ; // 16 bit data input bus

 3 output [7:0] count ; // 8 bit counter output

 4 inout data_bi ; // Bi-Directional data bus

You could download file port_declare.v here

Examples : A complete Example in Verilog

 1 module addbit (

 2 a , // first input

 3 b , // Second input

 4 ci , // Carry input

 5 sum , // sum output

 6 co // carry output
 7);

 8 //Input declaration

 9 input a;

 10 input b;

 11 input ci;

 12 //Ouput declaration

 13 output sum;

 14 output co;

 15 //Port Data types

 16 wire a;

 17 wire b;

 18 wire ci;

 19 wire sum;

 20 wire co;

 21 //Code starts here

 22 assign {co,sum} = a + b + ci;
 23

 24 endmodule // End of Module addbit

You could download file addbit.v here

Modules connected by port order (implicit)

 Here order should match correctly. Normally it's not a good idea to
connect ports implicitly. It could cause problem in debug (for example:

http://www.asic-world.com/code/verilog_tutorial/port_declare.v
http://www.asic-world.com/code/verilog_tutorial/addbit.v

 Verilog Programming Guide

60

locating the port which is causing a compile error), when any port is
added or deleted.

 1 //---

 2 // This is simple adder Program

 3 // Design Name : adder_implicit

 4 // File Name : adder_implicit.v

 5 // Function : This program shows how implicit

 6 // port connection are done

 7 // Coder : Deepak Kumar Tala

 8 //---

 9 module adder_implicit (

 10 result , // Output of the adder

 11 carry , // Carry output of adder

 12 r1 , // first input

 13 r2 , // second input

 14 ci // carry input
 15);

 16

 17 // Input Port Declarations

 18 input [3:0] r1 ;

 19 input [3:0] r2 ;

 20 input ci ;
 21

 22 // Output Port Declarations

 23 output [3:0] result ;

 24 output carry ;
 25

 26 // Port Wires

 27 wire [3:0] r1 ;

 28 wire [3:0] r2 ;

 29 wire ci ;

 30 wire [3:0] result ;

 31 wire carry ;
 32

 33 // Internal variables

 34 wire c1 ;

 35 wire c2 ;

 36 wire c3 ;
 37

 38 // Code Starts Here
 39 addbit u0 (

 40 r1[0] ,

 41 r2[0] ,

 42 ci ,

 43 result[0] ,

 44 c1

 45);

 Verilog Programming Guide

61

 46

 47 addbit u1 (

 48 r1[1] ,

 49 r2[1] ,

 50 c1 ,

 51 result[1] ,

 52 c2

 53);

 54

 55 addbit u2 (

 56 r1[2] ,

 57 r2[2] ,

 58 c2 ,

 59 result[2] ,

 60 c3

 61);

 62

 63 addbit u3 (

 64 r1[3] ,

 65 r2[3] ,

 66 c3 ,

 67 result[3] ,

 68 carry

 69);

 70

 71 endmodule // End Of Module adder

You could download file adder_implicit.v here

Modules connected by name

 Here the name should match with the leaf module, the order is not
important.

 1 //---

 2 // This is simple adder Program

 3 // Design Name : adder_explicit

 4 // File Name : adder_explicit.v

 5 // Function : Here the name should match

 6 // with the leaf module, the order is not important.

 7 // Coder : Deepak Kumar Tala

 8 //---

 9 module adder_explicit (

 10 result , // Output of the adder

 11 carry , // Carry output of adder

 12 r1 , // first input

 13 r2 , // second input

 14 ci // carry input
 15);

http://www.asic-world.com/code/verilog_tutorial/adder_implicit.v

 Verilog Programming Guide

62

 16

 17 // Input Port Declarations

 18 input [3:0] r1 ;

 19 input [3:0] r2 ;

 20 input ci ;
 21

 22 // Output Port Declarations

 23 output [3:0] result ;

 24 output carry ;
 25

 26 // Port Wires

 27 wire [3:0] r1 ;

 28 wire [3:0] r2 ;

 29 wire ci ;

 30 wire [3:0] result ;

 31 wire carry ;
 32

 33 // Internal variables

 34 wire c1 ;

 35 wire c2 ;

 36 wire c3 ;
 37

 38 // Code Starts Here
 39 addbit u0 (

 40 .a (r1[0]) ,

 41 .b (r2[0]) ,

 42 .ci (ci) ,

 43 .sum (result[0]) ,

 44 .co (c1)

 45);

 46

 47 addbit u1 (

 48 .a (r1[1]) ,

 49 .b (r2[1]) ,

 50 .ci (c1) ,

 51 .sum (result[1]) ,

 52 .co (c2)

 53);

 54

 55 addbit u2 (

 56 .a (r1[2]) ,

 57 .b (r2[2]) ,

 58 .ci (c2) ,

 59 .sum (result[2]) ,

 60 .co (c3)

 61);

 62

 63 addbit u3 (

 64 .a (r1[3]) ,

 65 .b (r2[3]) ,

 Verilog Programming Guide

63

 66 .ci (c3) ,

 67 .sum (result[3]) ,

 68 .co (carry)

 69);

 70

 71 endmodule // End Of Module adder

You could download file adder_explicit.v here

Instantiating a module

 1 //---

 2 // This is simple parity Program

 3 // Design Name : parity

 4 // File Name : parity.v

 5 // Function : This program shows how a verilog

 6 // primitive/module port connection are done

 7 // Coder : Deepak

 8 //---

 9 module parity (

 10 a , // First input

 11 b , // Second input

 12 c , // Third Input

 13 d , // Fourth Input

 14 y // Parity output
 15);

 16

 17 // Input Declaration

 18 input a ;

 19 input b ;

 20 input c ;

 21 input d ;

 22 // Ouput Declaration

 23 output y ;

 24 // port data types

 25 wire a ;

 26 wire b ;

 27 wire c ;

 28 wire d ;

 29 wire y ;

 30 // Internal variables

 31 wire out_0 ;

 32 wire out_1 ;
 33

 34 // Code starts Here

 35 xor u0 (out_0,a,b);
 36

 37 xor u1 (out_1,c,d);

http://www.asic-world.com/code/verilog_tutorial/adder_explicit.v

 Verilog Programming Guide

64

 38

 39 xor u2 (y,out_0,out_1);
 40

 41 endmodule // End Of Module parity

You could download file parity.v here

 Question : What is the difference between u0 in module adder and u0
in module parity?

Schematic

Port Connection Rules

• Inputs : internally must always be of type net, externally the
inputs can be connected to a variable of type reg or net.

• Outputs : internally can be of type net or reg, externally the
outputs must be connected to a variable of type net.

• Inouts : internally or externally must always be type net, can only
be connected to a variable net type.

• Width matching : It is legal to connect internal and external ports

of different sizes. But beware, synthesis tools could report
problems.

http://www.asic-world.com/code/verilog_tutorial/parity.v

 Verilog Programming Guide

65

• Unconnected ports : unconnected ports are allowed by using a
",".

• The net data types are used to connect structure.
• A net data type is required if a signal can be driven a structural

connection.

Example - Implicit Unconnected Port

 1 module implicit();

 2 reg clk,d,rst,pre;

 3 wire q;
 4

 5 // Here second port is not connected
 6 dff u0 (q,,clk,d,rst,pre);

 7

 8 endmodule
 9

 10 // D fli-flop

 11 module dff (q, q_bar, clk, d, rst, pre);

 12 input clk, d, rst, pre;

 13 output q, q_bar;

 14 reg q;
 15

 16 assign q_bar = ~q;
 17

 18 always @ (posedge clk)

 19 if (rst == 1'b1) begin

 20 q <= 0;

 21 end else if (pre == 1'b1) begin

 22 q <= 1;

 23 end else begin

 24 q <= d;

 25 end
 26

 27 endmodule

You could download file implicit.v here

Example - Explicit Unconnected Port

 1 module explicit();

 2 reg clk,d,rst,pre;

 3 wire q;
 4

 5 // Here q_bar is not connected

http://www.asic-world.com/code/verilog_tutorial/implicit.v

 Verilog Programming Guide

66

 6 // We can connect ports in any order
 7 dff u0 (

 8 .q (q),

 9 .d (d),

 10 .clk (clk),

 11 .q_bar (),

 12 .rst (rst),

 13 .pre (pre)

 14);

 15

 16 endmodule
 17

 18 // D fli-flop

 19 module dff (q, q_bar, clk, d, rst, pre);

 20 input clk, d, rst, pre;

 21 output q, q_bar;

 22 reg q;
 23

 24 assign q_bar = ~q;
 25

 26 always @ (posedge clk)

 27 if (rst == 1'b1) begin

 28 q <= 0;

 29 end else if (pre == 1'b1) begin

 30 q <= 1;

 31 end else begin

 32 q <= d;

 33 end
 34

 35 endmodule

You could download file explicit.v here
Hierarchical
Identifiers

 Hierarchical path names are based on the top module identifier
followed by module instant identifiers, separated by periods.

This is useful basically when we want to see the signal inside a
lower module, or want to force a value inside an internal module.
The example below shows how to monitor the value of an internal
module signal.

Example

 1 //---

 2 // This is simple adder Program

 3 // Design Name : adder_hier

http://www.asic-world.com/code/verilog_tutorial/explicit.v

 Verilog Programming Guide

67

 4 // File Name : adder_hier.v

 5 // Function : This program shows verilog hier path works

 6 // Coder : Deepak

 7 //---

 8 `include "addbit.v"

 9 module adder_hier (

 10 result , // Output of the adder

 11 carry , // Carry output of adder

 12 r1 , // first input

 13 r2 , // second input

 14 ci // carry input
 15);

 16

 17 // Input Port Declarations

 18 input [3:0] r1 ;

 19 input [3:0] r2 ;

 20 input ci ;
 21

 22 // Output Port Declarations

 23 output [3:0] result ;

 24 output carry ;
 25

 26 // Port Wires

 27 wire [3:0] r1 ;

 28 wire [3:0] r2 ;

 29 wire ci ;

 30 wire [3:0] result ;

 31 wire carry ;
 32

 33 // Internal variables

 34 wire c1 ;

 35 wire c2 ;

 36 wire c3 ;
 37

 38 // Code Starts Here
 39 addbit u0 (r1[0],r2[0],ci,result[0],c1);

 40 addbit u1 (r1[1],r2[1],c1,result[1],c2);

 41 addbit u2 (r1[2],r2[2],c2,result[2],c3);

 42 addbit u3 (r1[3],r2[3],c3,result[3],carry);

 43

 44 endmodule // End Of Module adder
 45

 46 module tb();
 47

 48 reg [3:0] r1,r2;

 49 reg ci;

 50 wire [3:0] result;

 51 wire carry;
 52

 Verilog Programming Guide

68

 53 // Drive the inputs

 54 initial begin

 55 r1 = 0;

 56 r2 = 0;

 57 ci = 0;

 58 #10 r1 = 10;

 59 #10 r2 = 2;

 60 #10 ci = 1;

 61 #10 $display("+--+");

 62 $finish;

 63 end
 64

 65 // Connect the lower module
 66 adder_hier U (result,carry,r1,r2,ci);

 67

 68 // Hier demo here

 69 initial begin

 70 $display("+--+");

 71 $display("| r1 | r2 | ci | u0.sum | u1.sum | u2.sum | u3.sum

|");

 72 $display("+--+");

 73 $monitor("| %h | %h | %h | %h | %h | %h | %h

|",
 74 r1,r2,ci, tb.U.u0.sum, tb.U.u1.sum, tb.U.u2.sum,

tb.U.u3.sum);

 75 end
 76

 77 endmodule

You could download file adder_hier.v here

 +--+
 | r1 | r2 | ci | u0.sum | u1.sum | u2.sum | u3.sum |
 +--+
0	0	0	0	0	0	0
a	0	0	0	1	0	1
a	2	0	0	0	1	1
a	2	1	1	0	1	1
 +--+

Data Types
 Verilog Language has two primary data types:

• Nets - represent structural connections between
components.

• Registers - represent variables used to store data.

http://www.asic-world.com/code/verilog_tutorial/adder_hier.v

 Verilog Programming Guide

69

 Every signal has a data type associated with it:

• Explicitly declared with a declaration in your Verilog
code.

• Implicitly declared with no declaration when used to
connect structural building blocks in your code. Implicit
declaration is always a net type "wire" and is one bit wide.

Types of Nets

 Each net type has a functionality that is used to model different
types of hardware (such as PMOS, NMOS, CMOS, etc)

Net Data Type Functionality

wire, tri
Interconnecting wire - no special resolution

function

wor, trior Wired outputs OR together (models ECL)

wand, triand
Wired outputs AND together (models open-

collector)

tri0, tri1 Net pulls-down or pulls-up when not driven

supply0, supply1
Net has a constant logic 0 or logic 1 (supply

strength)

trireg Retains last value, when driven by z (tristate).

 Note : Of all net types, wire is the one which is most widely used.

Example - wor

 1 module test_wor();
 2

 3 wor a;

 4 reg b, c;
 5

 6 assign a = b;

 7 assign a = c;
 8

 9 initial begin

 10 $monitor("%g a = %b b = %b c = %b", $time, a, b, c);

 11 #1 b = 0;

 12 #1 c = 0;

 13 #1 b = 1;

 Verilog Programming Guide

70

 14 #1 b = 0;

 15 #1 c = 1;

 16 #1 b = 1;

 17 #1 b = 0;

 18 #1 $finish;

 19 end
 20

 21 endmodule

You could download file test_wor.v here

 Simulator Output

 0 a = x b = x c = x
 1 a = x b = 0 c = x
 2 a = 0 b = 0 c = 0
 3 a = 1 b = 1 c = 0
 4 a = 0 b = 0 c = 0
 5 a = 1 b = 0 c = 1
 6 a = 1 b = 1 c = 1
 7 a = 1 b = 0 c = 1

Example - wand

 1 module test_wand();
 2

 3 wand a;

 4 reg b, c;
 5

 6 assign a = b;

 7 assign a = c;
 8

 9 initial begin

 10 $monitor("%g a = %b b = %b c = %b", $time, a, b, c);

 11 #1 b = 0;

 12 #1 c = 0;

 13 #1 b = 1;

 14 #1 b = 0;

 15 #1 c = 1;

 16 #1 b = 1;

 17 #1 b = 0;

 18 #1 $finish;

 19 end
 20

 21 endmodule

You could download file test_wand.v here

http://www.asic-world.com/code/verilog_tutorial/test_wor.v
http://www.asic-world.com/code/verilog_tutorial/test_wand.v

 Verilog Programming Guide

71

 Simulator Output

 0 a = x b = x c = x
 1 a = 0 b = 0 c = x
 2 a = 0 b = 0 c = 0
 3 a = 0 b = 1 c = 0
 4 a = 0 b = 0 c = 0
 5 a = 0 b = 0 c = 1
 6 a = 1 b = 1 c = 1
 7 a = 0 b = 0 c = 1

Example - tri

 1 module test_tri();
 2

 3 tri a;

 4 reg b, c;
 5

 6 assign a = (b) ? c : 1'bz;
 7

 8 initial begin

 9 $monitor("%g a = %b b = %b c = %b", $time, a, b, c);

 10 b = 0;

 11 c = 0;

 12 #1 b = 1;

 13 #1 b = 0;

 14 #1 c = 1;

 15 #1 b = 1;

 16 #1 b = 0;

 17 #1 $finish;

 18 end
 19

 20 endmodule

You could download file test_tri.v here

 Simulator Output

 0 a = z b = 0 c = 0
 1 a = 0 b = 1 c = 0
 2 a = z b = 0 c = 0
 3 a = z b = 0 c = 1
 4 a = 1 b = 1 c = 1
 5 a = z b = 0 c = 1

Example - trireg

http://www.asic-world.com/code/verilog_tutorial/test_tri.v

 Verilog Programming Guide

72

 1 module test_trireg();
 2

 3 trireg a;

 4 reg b, c;
 5

 6 assign a = (b) ? c : 1'bz;
 7

 8 initial begin

 9 $monitor("%g a = %b b = %b c = %b", $time, a, b, c);

 10 b = 0;

 11 c = 0;

 12 #1 b = 1;

 13 #1 b = 0;

 14 #1 c = 1;

 15 #1 b = 1;

 16 #1 b = 0;

 17 #1 $finish;

 18 end
 19

 20 endmodule

You could download file test_trireg.v here

 Simulator Output

 0 a = x b = 0 c = 0
 1 a = 0 b = 1 c = 0
 2 a = 0 b = 0 c = 0
 3 a = 0 b = 0 c = 1
 4 a = 1 b = 1 c = 1
 5 a = 1 b = 0 c = 1

Register Data Types

• Registers store the last value assigned to them until
another assignment statement changes their value.

• Registers represent data storage constructs.
• You can create regs arrays called memories.
• register data types are used as variables in procedural

blocks.
• A register data type is required if a signal is assigned a

value within a procedural block
• Procedural blocks begin with keyword initial and always.

 Data Types Functionality

reg Unsigned variable

http://www.asic-world.com/code/verilog_tutorial/test_trireg.v

 Verilog Programming Guide

73

integer Signed variable - 32 bits

time Unsigned integer - 64 bits

real Double precision floating point variable

 Note : Of all register types, reg is the one which is most widely
used

Strings

A string is a sequence of characters enclosed by double quotes
and all contained on a single line. Strings used as operands in
expressions and assignments are treated as a sequence of eight-
bit ASCII values, with one eight-bit ASCII value representing one
character. To declare a variable to store a string, declare a
register large enough to hold the maximum number of characters
the variable will hold. Note that no extra bits are required to hold
a termination character; Verilog does not store a string
termination character. Strings can be manipulated using the
standard operators.

When a variable is larger than required to hold a value being
assigned, Verilog pads the contents on the left with zeros after
the assignment. This is consistent with the padding that occurs
during assignment of non-string values.

Certain characters can be used in strings only when preceded by
an introductory character called an escape character. The
following table lists these characters in the right-hand column
together with the escape sequence that represents the character
in the left-hand column.

Special Characters in Strings

Character Description

\n New line character

\t Tab character

\\ Backslash (\) character

\" Double quote (") character

\ddd
A character specified in 1-3 octal digits (0 <= d <=

7)

 Verilog Programming Guide

74

%% Percent (%) character

Example

 1 //---

 2 // Design Name : strings

 3 // File Name : strings.v

 4 // Function : This program shows how string

 5 // can be stored in reg

 6 // Coder� : Deepak Kumar Tala

 7 //---

 8 module strings();

 9 // Declare a register variable that is 21 bytes

 10 reg [8*21:0] string ;
 11

 12 initial begin

 13 string = "This is sample string";

 14 $display ("%s \n", string);

 15 end
 16

 17 endmodule

You could download file strings.v here

 This is sample string

Introduction

Verilog has built in primitives like gates, transmission gates, and
switches. These are rarely used in design (RTL Coding), but are
used in post synthesis world for modeling the ASIC/FPGA cells;
these cells are then used for gate level simulation, or what is
called as SDF simulation. Also the output netlist format from the
synthesis tool, which is imported into the place and route tool, is
also in Verilog gate level primitives.

Note : RTL engineers still may use gate level primitivies or ASIC
library cells in RTL when using IO CELLS, Cross domain synch
cells.

Gate Primitives

http://www.asic-world.com/code/verilog_tutorial/strings.v

 Verilog Programming Guide

75

The gates have one scalar output and multiple scalar inputs. The
1st terminal in the list of gate terminals is an output and the other
terminals are inputs.

Gate

and

nand

or

nor

xor

xnor

Examples

 1 module gates();
 2

 3 wire out0;

 4 wire out1;

 5 wire out2;

 6 reg in1,in2,in3,in4;
 7

 8 not U1(out0,in1);

 9 and U2(out1,in1,in2,in3,in4);

 10 xor U3(out2,in1,in2,in3);
 11

 12 initial begin

 13 $monitor(

 14 "in1=%b in2=%b in3=%b in4=%b out0=%b out1=%b out2=%b",
 15 in1,in2,in3,in4,out0,out1,out2);

 16 in1 = 0;

 17 in2 = 0;

 Verilog Programming Guide

76

 18 in3 = 0;

 19 in4 = 0;

 20 #1 in1 = 1;

 21 #1 in2 = 1;

 22 #1 in3 = 1;

 23 #1 in4 = 1;

 24 #1 $finish;

 25 end
 26

 27 endmodule

You could download file gates.v here

 in1 = 0 in2 = 0 in3 = 0 in4 = 0 out0 = 1 out1 = 0 out2 = 0
 in1 = 1 in2 = 0 in3 = 0 in4 = 0 out0 = 0 out1 = 0 out2 = 1
 in1 = 1 in2 = 1 in3 = 0 in4 = 0 out0 = 0 out1 = 0 out2 = 0
 in1 = 1 in2 = 1 in3 = 1 in4 = 0 out0 = 0 out1 = 0 out2 = 1
 in1 = 1 in2 = 1 in3 = 1 in4 = 1 out0 = 0 out1 = 1 out2 = 1

Transmission Gate Primitives

 Transmission gates are bi-directional and can be resistive or non-
resistive.

 Syntax: keyword unique_name (inout1, inout2, control);

Gate

not

buf

bufif0

bufif1

notif0

notif1

http://www.asic-world.com/code/verilog_tutorial/gates.v

 Verilog Programming Guide

77

Transmission gates tran and rtran are permanently on and do not
have a control line. Tran can be used to interface two wires with
seperate drives, and rtran can be used to weaken signals.

Examples

 1 module transmission_gates();
 2

 3 reg data_enable_low, in;

 4 wire data_bus, out1, out2;
 5

 6 bufif0 U1(data_bus,in, data_enable_low);

 7 buf U2(out1,in);

 8 not U3(out2,in);
 9

 10 initial begin

 11 $monitor(

 12 "@%g in=%b data_enable_low=%b out1=%b out2= b

data_bus=%b",

 13 $time, in, data_enable_low, out1, out2,
data_bus);

 14 data_enable_low = 0;

 15 in = 0;

 16 #4 data_enable_low = 1;

 17 #8 $finish;

 18 end
 19

 20 always #2 in = ~in;
 21

 22 endmodule

You could download file transmission_gates.v here

 @0 in = 0 data_enable_low = 0 out1 = 0 out2 = 1 data_bus = 0
 @2 in = 1 data_enable_low = 0 out1 = 1 out2 = 0 data_bus = 1
 @4 in = 0 data_enable_low = 1 out1 = 0 out2 = 1 data_bus = z
 @6 in = 1 data_enable_low = 1 out1 = 1 out2 = 0 data_bus = z
 @8 in = 0 data_enable_low = 1 out1 = 0 out2 = 1 data_bus = z
 @10 in = 1 data_enable_low = 1 out1 = 1 out2 = 0 data_bus = z

Switch Primitives

There are six different switch primitives (transistor models) used
in Verilog, nmos, pmos and cmos and the corresponding three
resistive versions rnmos, rpmos and rcmos. The cmos type of
switches have two gates and so have two control signals.

http://www.asic-world.com/code/verilog_tutorial/transmission_gates.v

 Verilog Programming Guide

78

 Syntax: keyword unique_name (drain. source, gate)

Gate

1. pmos

1. rpmos

2. nmos

2. rnmos

3. cmos

3. rcmos

4. tranif1

4. tranif0

5. rtranif1

5. rtranif0

6. tran

6. rtran

7. pullup

8. pulldown

Transmission gates are bi-directional and can be resistive or non-
resistive. Resistive devices reduce the signal strength which
appears on the output by one level. All the switches only pass
signals from source to drain, incorrect wiring of the devices will
result in high impedance outputs.

 Verilog Programming Guide

79

Examples

 1 module switch_primitives();
 2

 3 wire net1, net2, net3;

 4 wire net4, net5, net6;
 5

 6 tranif0 my_gate1 (net1, net2, net3);

 7 rtranif1 my_gate2 (net4, net5, net6);
 8

 9 endmodule

You could download file switch_primitives.v here

Transmission gates tran and rtran are permanently on and do not
have a control line. Tran can be used to interface two wires with
separate drives, and rtran can be used to weaken signals.
Resistive devices reduce the signal strength which appears on
the output by one level. All the switches only pass signals from
source to drain, incorrect wiring of the devices will result in high
impedance outputs.

Logic Values and signal Strengths
 The Verilog HDL has got four logic values

Logic Value

0

1

z or Z

x or X

Verilog Strength Levels

Strength Level

7 Supply Drive

6 Strong Pull

5 Pull Drive

4 Large Capacitance

3 Weak Drive

2 Medium Capacitance

http://www.asic-world.com/code/verilog_tutorial/switch_primitives.v

 Verilog Programming Guide

80

1 Small Capacitance

0 Hi Impedance

Example : Strength Level

 Two buffers that has output
 A : Pull 1
 B : Supply 0
 Since supply 0 is stronger then pull 1, Output C takes value of B.

Example 2 : Strength Level

 Two buffers that has output
 A : Supply 1
 B : Large 1

 Since Supply 1 is stronger then Large 1, Output C takes the value
of A

Designing
Using
Primitives

 Designing using primitives is used only in library development, where the ASIC vendor provides
the ASIC library Verilog description, using Verilog primitives and user defined primitives (UDP).

 Verilog Programming Guide

81

AND Gate from NAND Gate

Code

 1 // Structural model of AND gate from two NANDS

 2 module and_from_nand();
 3

 4 reg X, Y;

 5 wire F, W;

 6 // Two instantiations of the module NAND

 7 nand U1(W,X, Y);

 8 nand U2(F, W, W);
 9

 10 // Testbench Code

 11 initial begin

 12 $monitor ("X = %b Y = %b F = %b", X, Y, F);

 13 X = 0;

 14 Y = 0;

 15 #1 X = 1;

 16 #1 Y = 1;

 17 #1 X = 0;

 18 #1 $finish;

 19 end
 20

 21 endmodule

You could download file and_from_nand.v here

 X = 0 Y = 0 F = 0
 X = 1 Y = 0 F = 0
 X = 1 Y = 1 F = 1
 X = 0 Y = 1 F = 0

D-Flip flop from NAND Gate

http://www.asic-world.com/code/verilog_tutorial/and_from_nand.v

 Verilog Programming Guide

82

Verilog Code

 1 module dff_from_nand();

 2 wire Q,Q_BAR;

 3 reg D,CLK;
 4

 5 nand U1 (X,D,CLK) ;

 6 nand U2 (Y,X,CLK) ;

 7 nand U3 (Q,Q_BAR,X);

 8 nand U4 (Q_BAR,Q,Y);
 9

 10 // Testbench of above code

 11 initial begin

 12 $monitor("CLK = %b D = %b Q = %b Q_BAR = %b",CLK, D, Q, Q_BAR);

 13 CLK = 0;

 14 D = 0;

 15 #3 D = 1;

 16 #3 D = 0;

 17 #3 $finish;

 18 end
 19

 20 always #2 CLK = ~CLK;
 21

 22 endmodule

You could download file dff_from_nand.v here

 CLK = 0 D = 0 Q = x Q_BAR = x
 CLK = 1 D = 0 Q = 0 Q_BAR = 1
 CLK = 1 D = 1 Q = 1 Q_BAR = 0
 CLK = 0 D = 1 Q = 1 Q_BAR = 0
 CLK = 1 D = 0 Q = 0 Q_BAR = 1
 CLK = 0 D = 0 Q = 0 Q_BAR = 1

http://www.asic-world.com/code/verilog_tutorial/dff_from_nand.v

 Verilog Programming Guide

83

Multiplexer from primitives

Verilog Code

 1 module mux_from_gates ();

 2 reg c0,c1,c2,c3,A,B;

 3 wire Y;

 4 //Invert the sel signals

 5 not (a_inv, A);

 6 not (b_inv, B);

 7 // 3-input AND gate

 8 and (y0,c0,a_inv,b_inv);

 9 and (y1,c1,a_inv,B);

 10 and (y2,c2,A,b_inv);

 11 and (y3,c3,A,B);

 12 // 4-input OR gate

 13 or (Y, y0,y1,y2,y3);
 14

 15 // Testbench Code goes here

 16 initial begin

 17 $monitor (

 18 "c0 = %b c1 = %b c2 = %b c3 = %b A = %b B = %b Y = %b",

 Verilog Programming Guide

84

 19 c0, c1, c2, c3, A, B, Y);

 20 c0 = 0;

 21 c1 = 0;

 22 c2 = 0;

 23 c3 = 0;

 24 A = 0;

 25 B = 0;

 26 #1 A = 1;

 27 #2 B = 1;

 28 #4 A = 0;

 29 #8 $finish;

 30 end
 31

 32 always #1 c0 = ~c0;

 33 always #2 c1 = ~c1;

 34 always #3 c2 = ~c2;

 35 always #4 c3 = ~c3;
 36

 37 endmodule

You could download file mux_from_gates.v here

 c0 = 0 c1 = 0 c2 = 0 c3 = 0 A = 0 B = 0 Y = 0
 c0 = 1 c1 = 0 c2 = 0 c3 = 0 A = 1 B = 0 Y = 0
 c0 = 0 c1 = 1 c2 = 0 c3 = 0 A = 1 B = 0 Y = 0
 c0 = 1 c1 = 1 c2 = 1 c3 = 0 A = 1 B = 1 Y = 0
 c0 = 0 c1 = 0 c2 = 1 c3 = 1 A = 1 B = 1 Y = 1
 c0 = 1 c1 = 0 c2 = 1 c3 = 1 A = 1 B = 1 Y = 1
 c0 = 0 c1 = 1 c2 = 0 c3 = 1 A = 1 B = 1 Y = 1
 c0 = 1 c1 = 1 c2 = 0 c3 = 1 A = 0 B = 1 Y = 1
 c0 = 0 c1 = 0 c2 = 0 c3 = 0 A = 0 B = 1 Y = 0
 c0 = 1 c1 = 0 c2 = 1 c3 = 0 A = 0 B = 1 Y = 0
 c0 = 0 c1 = 1 c2 = 1 c3 = 0 A = 0 B = 1 Y = 1
 c0 = 1 c1 = 1 c2 = 1 c3 = 0 A = 0 B = 1 Y = 1
 c0 = 0 c1 = 0 c2 = 0 c3 = 1 A = 0 B = 1 Y = 0
 c0 = 1 c1 = 0 c2 = 0 c3 = 1 A = 0 B = 1 Y = 0
 c0 = 0 c1 = 1 c2 = 0 c3 = 1 A = 0 B = 1 Y = 1

Gate and
Switch
delays

 In real circuits, logic gates have delays associated with them. Verilog provides the mechanism
to associate delays with gates.

• Rise, Fall and Turn-off delays.
• Minimal, Typical, and Maximum delays.

http://www.asic-world.com/code/verilog_tutorial/mux_from_gates.v

 Verilog Programming Guide

85

In Verilog delays can be introduced with #'num' as in the examples below, where # is a special
character to introduce delay, and 'num' is the number of ticks simulator should delay current
statement execution.

• #1 a = b : Delay by 1, i.e. execute after 1 tick
• #2 not (a,b) : Delay by 2 all assignments made to a.

Real transistors have resolution delays between the input and output. This is modeled in Verilog
by specifying one or more delays for the rise, fall, turn-on and turn off time seperated by
commas.

 Syntax: keyword #(delay{s}) unique_name (node specifications);

Switch element
Number Of
Delays

Specified delays

Switch 1 Rise, fall and turn-off times of equal length
 2 Rise and fall times
 3 Rise, fall and turn off

(r)tranif0, (r)tranif1 1 both turn on and turn off
 2 turn on, turn off

(r)tran 0 None allowed

Rise Delay
 The rise delay is associated with a gate output transition to 1 from another value (0, x, z).

Fall Delay
 The fall delay is associated with a gate output transition to 0 from another value (1, x, z).

 Verilog Programming Guide

86

Turn-off Delay
 The Turn-off delay is associated with a gate output transition to z from another value (0, 1, x).

Min Value
 The min value is the minimum delay value that the gate is expected to have.

Typ Value
 The typ value is the typical delay value that the gate is expected to have.

Max Value
 The max value is the maximum delay value that the gate is expected to have.

Example
 Below are some examples to show the usage of delays.

Example - Single Delay

 1 module buf_gate ();

 2 reg in;

 3 wire out;
 4

 5 buf #(5) (out,in);
 6

 7 initial begin

 8 $monitor ("Time = %g in = %b out=%b", $time, in, out);

 9 in = 0;

 10 #10 in = 1;

 11 #10 in = 0;

 12 #10 $finish;

 Verilog Programming Guide

87

 13 end
 14

 15 endmodule

You could download file buf_gate.v here

 Time = 0 in = 0 out=x
 Time = 5 in = 0 out=0
 Time = 10 in = 1 out=0
 Time = 15 in = 1 out=1
 Time = 20 in = 0 out=1
 Time = 25 in = 0 out=0

Example - Two Delays

 1 module buf_gate1 ();

 2 reg in;

 3 wire out;
 4

 5 buf #(2,3) (out,in);
 6

 7 initial begin

 8 $monitor ("Time = %g in = %b out=%b", $time, in, out);

 9 in = 0;

 10 #10 in = 1;

 11 #10 in = 0;

 12 #10 $finish;

 13 end
 14

 15 endmodule

You could download file buf_gate1.v here

 Time = 0 in = 0 out=x
 Time = 3 in = 0 out=0

http://www.asic-world.com/code/verilog_tutorial/buf_gate.v
http://www.asic-world.com/code/verilog_tutorial/buf_gate1.v

 Verilog Programming Guide

88

 Time = 10 in = 1 out=0
 Time = 12 in = 1 out=1
 Time = 20 in = 0 out=1
 Time = 23 in = 0 out=0

Example - All Delays

 1 module delay();

 2 reg in;

 3 wire rise_delay, fall_delay, all_delay;
 4

 5 initial begin

 6 $monitor (

 7 "Time=%g in=%b rise_delay=%b fall_delay=%b all_delay=%b",

 8 $time, in, rise_delay, fall_delay, all_delay);

 9 in = 0;

 10 #10 in = 1;

 11 #10 in = 0;

 12 #20 $finish;

 13 end
 14

 15 buf #(1,0)U_rise (rise_delay,in);

 16 buf #(0,1)U_fall (fall_delay,in);

 17 buf #1 U_all (all_delay,in);
 18

 19 endmodule

You could download file delay.v here

 Time = 0 in = 0 rise_delay = 0 fall_delay = x all_delay = x
 Time = 1 in = 0 rise_delay = 0 fall_delay = 0 all_delay = 0
 Time = 10 in = 1 rise_delay = 0 fall_delay = 1 all_delay = 0
 Time = 11 in = 1 rise_delay = 1 fall_delay = 1 all_delay = 1
 Time = 20 in = 0 rise_delay = 0 fall_delay = 1 all_delay = 1

http://www.asic-world.com/code/verilog_tutorial/delay.v

 Verilog Programming Guide

89

 Time = 21 in = 0 rise_delay = 0 fall_delay = 0 all_delay = 0

Example - Complex Example

 1 module delay_example();
 2

 3 wire out1,out2,out3,out4,out5,out6;

 4 reg b,c;
 5

 6 // Delay for all transitions

 7 or #5 u_or (out1,b,c);

 8 // Rise and fall delay

 9 and #(1,2) u_and (out2,b,c);

 10 // Rise, fall and turn off delay

 11 nor #(1,2,3) u_nor (out3,b,c);

 12 //One Delay, min, typ and max

 13 nand #(1:2:3) u_nand (out4,b,c);

 14 //Two delays, min,typ and max

 15 buf #(1:4:8,4:5:6) u_buf (out5,b);

 16 //Three delays, min, typ, and max

 17 notif1 #(1:2:3,4:5:6,7:8:9) u_notif1 (out6,b,c);
 18

 19 //Testbench code

 20 initial begin

 21 $monitor (

 22 "Time=%g b=%b c=%b out1=%b out2=%b out3=%b out4=%b out5=%b out6=%b",

 23 $time, b, c , out1, out2, out3, out4, out5, out6);

 24 b = 0;

 25 c = 0;

 26 #10 b = 1;

 27 #10 c = 1;

 28 #10 b = 0;

 29 #10 $finish;

 30 end
 31

 32 endmodule

You could download file delay_example.v here

http://www.asic-world.com/code/verilog_tutorial/delay_example.v

 Verilog Programming Guide

90

 Time = 0 b = 0 c=0 out1=x out2=x out3=x out4=x out5=x out6=x
 Time = 1 b = 0 c=0 out1=x out2=x out3=1 out4=x out5=x out6=x
 Time = 2 b = 0 c=0 out1=x out2=0 out3=1 out4=1 out5=x out6=z
 Time = 5 b = 0 c=0 out1=0 out2=0 out3=1 out4=1 out5=0 out6=z
 Time = 8 b = 0 c=0 out1=0 out2=0 out3=1 out4=1 out5=0 out6=z
 Time = 10 b = 1 c=0 out1=0 out2=0 out3=1 out4=1 out5=0 out6=z
 Time = 12 b = 1 c=0 out1=0 out2=0 out3=0 out4=1 out5=0 out6=z
 Time = 14 b = 1 c=0 out1=0 out2=0 out3=0 out4=1 out5=1 out6=z
 Time = 15 b = 1 c=0 out1=1 out2=0 out3=0 out4=1 out5=1 out6=z
 Time = 20 b = 1 c=1 out1=1 out2=0 out3=0 out4=1 out5=1 out6=z
 Time = 21 b = 1 c=1 out1=1 out2=1 out3=0 out4=1 out5=1 out6=z
 Time = 22 b = 1 c=1 out1=1 out2=1 out3=0 out4=0 out5=1 out6=z
 Time = 25 b = 1 c=1 out1=1 out2=1 out3=0 out4=0 out5=1 out6=0
 Time = 30 b = 0 c=1 out1=1 out2=1 out3=0 out4=0 out5=1 out6=0
 Time = 32 b = 0 c=1 out1=1 out2=0 out3=0 out4=1 out5=1 out6=1
 Time = 35 b = 0 c=1 out1=1 out2=0 out3=0 out4=1 out5=0 out6=1

N-Input Primitives
 The and, nand, or, nor, xor, and xnor primitives have one output and any number of inputs

• The single output is the first terminal.
• All other terminals are inputs.

Examples

 1 module n_in_primitive();
 2

 3 wire out1,out2,out3;

 4 reg in1,in2,in3,in4;
 5

 6 // Two input AND gate

 7 and u_and1 (out1, in1, in2);

 8 // four input AND gate

 9 and u_and2 (out2, in1, in2, in3, in4);

 10 // three input XNOR gate

 11 xnor u_xnor1 (out3, in1, in2, in3);
 12

 13 //Testbench Code

 14 initial begin

 15 $monitor (

 16 "in1 = %b in2 = %b in3 = %b in4 = %b out1 = %b out2 = %b out3 = %b",
 17 in1, in2, in3, in4, out1, out2, out3);

 18 in1 = 0;

 19 in2 = 0;

 Verilog Programming Guide

91

 20 in3 = 0;

 21 in4 = 0;

 22 #1 in1 = 1;

 23 #1 in2 = 1;

 24 #1 in3 = 1;

 25 #1 in4 = 1;

 26 #1 $finish;

 27 end
 28

 29 endmodule

You could download file n_in_primitive.v here

 in1 = 0 in2 = 0 in3 = 0 in4 = 0 out1 = 0 out2 = 0 out3 = 1
 in1 = 1 in2 = 0 in3 = 0 in4 = 0 out1 = 0 out2 = 0 out3 = 0
 in1 = 1 in2 = 1 in3 = 0 in4 = 0 out1 = 1 out2 = 0 out3 = 1
 in1 = 1 in2 = 1 in3 = 1 in4 = 0 out1 = 1 out2 = 0 out3 = 0
 in1 = 1 in2 = 1 in3 = 1 in4 = 1 out1 = 1 out2 = 1 out3 = 0

N-Output Primitives
 The buf and not primitives have any number of outputs and one input

• The outputs are the first terminals listed.
• The last terminal is the single input.

Examples

 1 module n_out_primitive();
 2

 3 wire out,out_0,out_1,out_2,out_3,out_a,out_b,out_c;

 4 wire in;
 5

 6 // one output Buffer gate

 7 buf u_buf0 (out,in);

 8 // four output Buffer gate

 9 buf u_buf1 (out_0, out_1, out_2, out_3, in);

 10 // three output Invertor gate

 11 not u_not0 (out_a, out_b, out_c, in);
 12

 13 endmodule

You could download file n_out_primitive.v here
Arithmetic
Operators

http://www.asic-world.com/code/verilog_tutorial/n_in_primitive.v
http://www.asic-world.com/code/verilog_tutorial/n_out_primitive.v

 Verilog Programming Guide

92

• Binary: +, -, *, /, % (the modulus operator)
• Unary: +, - (This is used to specify the sign)
• Integer division truncates any fractional part
• The result of a modulus operation takes the sign of the first operand
• If any operand bit value is the unknown value x, then the entire result value is

x
• Register data types are used as unsigned values (Negative numbers are

stored in two's complement form)

Example

 1 module arithmetic_operators();
 2

 3 initial begin

 4 $display (" 5 + 10 = %d", 5 + 10);

 5 $display (" 5 - 10 = %d", 5 - 10);

 6 $display (" 10 - 5 = %d", 10 - 5);

 7 $display (" 10 * 5 = %d", 10 * 5);

 8 $display (" 10 / 5 = %d", 10 / 5);

 9 $display (" 10 / -5 = %d", 10 / -5);

 10 $display (" 10 %s 3 = %d","%", 10 % 3);

 11 $display (" +5 = %d", +5);

 12 $display (" -5 = %d", -5);

 13 #10 $finish;

 14 end
 15

 16 endmodule

You could download file arithmetic_operators.v here

 5 + 10 = 15
 5 - 10 = -5
 10 - 5 = 5
 10 * 5 = 50
 10 / 5 = 2
 10 / -5 = -2
 10 % 3 = 1
 +5 = 5
 -5 = -5

Relational Operators

 Operator Description

a < b a less than b

http://www.asic-world.com/code/verilog_tutorial/arithmetic_operators.v

 Verilog Programming Guide

93

a > b a greater than b

a <= b a less than or equal to b

a >= b a greater than or equal to b

• The result is a scalar value (example a < b)
• 0 if the relation is false (a is bigger then b)
• 1 if the relation is true (a is smaller then b)
• x if any of the operands has unknown x bits (if a or b contains X)

 Note: If any operand is x or z, then the result of that test is treated as false (0)

Example

 1 module relational_operators();
 2

 3 initial begin

 4 $display (" 5 <= 10 = %b", (5 <= 10));

 5 $display (" 5 >= 10 = %b", (5 >= 10));

 6 $display (" 1'bx <= 10 = %b", (1'bx <= 10));

 7 $display (" 1'bz <= 10 = %b", (1'bz <= 10));

 8 #10 $finish;

 9 end
 10

 11 endmodule

You could download file relational_operators.v here

 5 <= 10 = 1
 5 >= 10 = 0
 1'bx <= 10 = x
 1'bz <= 10 = x

Equality Operators
 There are two types of Equality operators. Case Equality and Logical Equality.

Operator Description

a === b a equal to b, including x and z (Case equality)

a !== b a not equal to b, including x and z (Case inequality)

a == b a equal to b, result may be unknown (logical equality)

a != b a not equal to b, result may be unknown (logical equality)

http://www.asic-world.com/code/verilog_tutorial/relational_operators.v

 Verilog Programming Guide

94

• Operands are compared bit by bit, with zero filling if the two operands do not
have the same length

• Result is 0 (false) or 1 (true)
• For the == and != operators, the result is x, if either operand contains an x or a

z
• For the === and !== operators, bits with x and z are included in the

comparison and must match for the result to be true

 Note : The result is always 0 or 1.

Example

 1 module equality_operators();
 2

 3 initial begin

 4 // Case Equality

 5 $display (" 4'bx001 === 4'bx001 = %b", (4'bx001 === 4'bx001));

 6 $display (" 4'bx0x1 === 4'bx001 = %b", (4'bx0x1 === 4'bx001));

 7 $display (" 4'bz0x1 === 4'bz0x1 = %b", (4'bz0x1 === 4'bz0x1));

 8 $display (" 4'bz0x1 === 4'bz001 = %b", (4'bz0x1 === 4'bz001));

 9 // Case Inequality

 10 $display (" 4'bx0x1 !== 4'bx001 = %b", (4'bx0x1 ! == 4'bx001));

 11 $display (" 4'bz0x1 !== 4'bz001 = %b", (4'bz0x1 ! == 4'bz001));

 12 // Logical Equality

 13 $display (" 5 == 10 = %b", (5 == 10));

 14 $display (" 5 == 5 = %b", (5 == 5));

 15 // Logical Inequality

 16 $display (" 5 != 5 = %b", (5 ! = 5));

 17 $display (" 5 != 6 = %b", (5 ! = 6));

 18 #10 $finish;

 19 end
 20

 21 endmodule

You could download file equality_operators.v here

 4'bx001 === 4'bx001 = 1
 4'bx0x1 === 4'bx001 = 0
 4'bz0x1 === 4'bz0x1 = 1
 4'bz0x1 === 4'bz001 = 0
 4'bx0x1 !== 4'bx001 = 1
 4'bz0x1 !== 4'bz001 = 1
 5 == 10 = 0
 5 == 5 = 1
 5 != 5 = 0

http://www.asic-world.com/code/verilog_tutorial/equality_operators.v

 Verilog Programming Guide

95

 5 != 6 = 1

Logical Operators

Operator Description

! logic negation

&& logical and

|| logical or

• Expressions connected by && and || are evaluated from left to right
• Evaluation stops as soon as the result is known
• The result is a scalar value:

o 0 if the relation is false
o 1 if the relation is true
o x if any of the operands has x (unknown) bits

Example

 1 module logical_operators();
 2

 3 initial begin

 4 // Logical AND

 5 $display ("1'b1 && 1'b1 = %b", (1'b1 && 1'b1));

 6 $display ("1'b1 && 1'b0 = %b", (1'b1 && 1'b0));

 7 $display ("1'b1 && 1'bx = %b", (1'b1 && 1'bx));

 8 // Logical OR

 9 $display ("1'b1 || 1'b0 = %b", (1'b1 || 1'b0));

 10 $display ("1'b0 || 1'b0 = %b", (1'b0 || 1'b0));

 11 $display ("1'b0 || 1'bx = %b", (1'b0 || 1'bx));

 12 // Logical Negation

 13 $display ("! 1'b1 = %b", (! 1'b1));

 14 $display ("! 1'b0 = %b", (! 1'b0));

 15 #10 $finish;

 16 end
 17

 18 endmodule

You could download file logical_operators.v here

 1'b1 && 1'b1 = 1
 1'b1 && 1'b0 = 0
 1'b1 && 1'bx = x
 1'b1 || 1'b0 = 1

http://www.asic-world.com/code/verilog_tutorial/logical_operators.v

 Verilog Programming Guide

96

 1'b0 || 1'b0 = 0
 1'b0 || 1'bx = x
 ! 1'b1 = 0
 ! 1'b0 = 1

Bit-wise Operators

Bitwise operators perform a bit wise operation on two operands. They take each bit in
one operand and perform the operation with the corresponding bit in the other
operand. If one operand is shorter than the other, it will be extended on the left side
with zeroes to match the length of the longer operand.

Operator Description

~ negation

& and

| inclusive or

^ exclusive or

^~ or ~^ exclusive nor (equivalence)

• Computations include unknown bits, in the following way:
o ~x = x
o 0&x = 0
o 1&x = x&x = x
o 1|x = 1
o 0|x = x|x = x
o 0^x = 1^x = x^x = x
o 0^~x = 1^~x = x^~x = x

• When operands are of unequal bit length, the shorter operand is zero-filled in
the most significant bit positions.

Example

 1 module bitwise_operators();
 2

 3 initial begin

 4 // Bit Wise Negation

 5 $display (" ~4'b0001 = %b", (~4'b0001));

 6 $display (" ~4'bx001 = %b", (~4'bx001));

 7 $display (" ~4'bz001 = %b", (~4'bz001));

 8 // Bit Wise AND

 9 $display (" 4'b0001 & 4'b1001 = %b", (4'b0001 & 4'b1001));

 Verilog Programming Guide

97

 10 $display (" 4'b1001 & 4'bx001 = %b", (4'b1001 & 4'bx001));

 11 $display (" 4'b1001 & 4'bz001 = %b", (4'b1001 & 4'bz001));

 12 // Bit Wise OR

 13 $display (" 4'b0001 | 4'b1001 = %b", (4'b0001 | 4'b1001));

 14 $display (" 4'b0001 | 4'bx001 = %b", (4'b0001 | 4'bx001));

 15 $display (" 4'b0001 | 4'bz001 = %b", (4'b0001 | 4'bz001));

 16 // Bit Wise XOR

 17 $display (" 4'b0001 ^ 4'b1001 = %b", (4'b0001 ^ 4'b1001));

 18 $display (" 4'b0001 ^ 4'bx001 = %b", (4'b0001 ^ 4'bx001));

 19 $display (" 4'b0001 ^ 4'bz001 = %b", (4'b0001 ^ 4'bz001));

 20 // Bit Wise XNOR

 21 $display (" 4'b0001 ~^ 4'b1001 = %b", (4'b0001 ~^ 4'b1001));

 22 $display (" 4'b0001 ~^ 4'bx001 = %b", (4'b0001 ~^ 4'bx001));

 23 $display (" 4'b0001 ~^ 4'bz001 = %b", (4'b0001 ~^ 4'bz001));

 24 #10 $finish;

 25 end
 26

 27 endmodule

You could download file bitwise_operators.v here

 ~4'b0001 = 1110
 ~4'bx001 = x110
 ~4'bz001 = x110
 4'b0001 & 4'b1001 = 0001
 4'b1001 & 4'bx001 = x001
 4'b1001 & 4'bz001 = x001
 4'b0001 | 4'b1001 = 1001
 4'b0001 | 4'bx001 = x001
 4'b0001 | 4'bz001 = x001
 4'b0001 ^ 4'b1001 = 1000
 4'b0001 ^ 4'bx001 = x000
 4'b0001 ^ 4'bz001 = x000
 4'b0001 ~^ 4'b1001 = 0111
 4'b0001 ~^ 4'bx001 = x111
 4'b0001 ~^ 4'bz001 = x111

Reduction
Operators

Operator Description

& and

~& nand

| or

~| nor

^ xor

http://www.asic-world.com/code/verilog_tutorial/bitwise_operators.v

 Verilog Programming Guide

98

^~ or ~^ xnor

• Reduction operators are unary.
• They perform a bit-wise operation on a single operand to produce a single bit result.
• Reduction unary NAND and NOR operators operate as AND and OR respectively, but with their outputs negated.

o Unknown bits are treated as described before.

Example

 1 module reduction_operators();
 2

 3 initial begin

 4 // Bit Wise AND reduction

 5 $display (" & 4'b1001 = %b", (& 4'b1001));

 6 $display (" & 4'bx111 = %b", (& 4'bx111));

 7 $display (" & 4'bz111 = %b", (& 4'bz111));

 8 // Bit Wise NAND reduction

 9 $display (" ~& 4'b1001 = %b", (~& 4'b1001));

 10 $display (" ~& 4'bx001 = %b", (~& 4'bx001));

 11 $display (" ~& 4'bz001 = %b", (~& 4'bz001));

 12 // Bit Wise OR reduction

 13 $display (" | 4'b1001 = %b", (| 4'b1001));

 14 $display (" | 4'bx000 = %b", (| 4'bx000));

 15 $display (" | 4'bz000 = %b", (| 4'bz000));

 16 // Bit Wise NOR reduction

 17 $display (" ~| 4'b1001 = %b", (~| 4'b1001));

 18 $display (" ~| 4'bx001 = %b", (~| 4'bx001));

 19 $display (" ~| 4'bz001 = %b", (~| 4'bz001));

 20 // Bit Wise XOR reduction

 21 $display (" ^ 4'b1001 = %b", (^ 4'b1001));

 22 $display (" ^ 4'bx001 = %b", (^ 4'bx001));

 23 $display (" ^ 4'bz001 = %b", (^ 4'bz001));

 24 // Bit Wise XNOR

 25 $display (" ~^ 4'b1001 = %b", (~^ 4'b1001));

 26 $display (" ~^ 4'bx001 = %b", (~^ 4'bx001));

 27 $display (" ~^ 4'bz001 = %b", (~^ 4'bz001));

 28 #10 $finish;

 29 end
 30

 31 endmodule

You could download file reduction_operators.v here

 & 4'b1001 = 0
 & 4'bx111 = x

http://www.asic-world.com/code/verilog_tutorial/reduction_operators.v

 Verilog Programming Guide

99

 & 4'bz111 = x
 ~& 4'b1001 = 1
 ~& 4'bx001 = 1
 ~& 4'bz001 = 1
 | 4'b1001 = 1
 | 4'bx000 = x
 | 4'bz000 = x
 ~| 4'b1001 = 0
 ~| 4'bx001 = 0
 ~| 4'bz001 = 0
 ^ 4'b1001 = 0
 ^ 4'bx001 = x
 ^ 4'bz001 = x
 ~^ 4'b1001 = 1
 ~^ 4'bx001 = x
 ~^ 4'bz001 = x

Shift Operators

Operator Description

<< left shift

>> right shift

• The left operand is shifted by the number of bit positions given by the right operand.
• The vacated bit positions are filled with zeroes.

Example

 1 module shift_operators();
 2

 3 initial begin

 4 // Left Shift

 5 $display (" 4'b1001 << 1 = %b", (4'b1001 << 1));

 6 $display (" 4'b10x1 << 1 = %b", (4'b10x1 << 1));

 7 $display (" 4'b10z1 << 1 = %b", (4'b10z1 << 1));

 8 // Right Shift

 9 $display (" 4'b1001 >> 1 = %b", (4'b1001 >> 1));

 10 $display (" 4'b10x1 >> 1 = %b", (4'b10x1 >> 1));

 11 $display (" 4'b10z1 >> 1 = %b", (4'b10z1 >> 1));

 12 #10 $finish;

 13 end
 14

 15 endmodule

You could download file shift_operators.v here

http://www.asic-world.com/code/verilog_tutorial/shift_operators.v

 Verilog Programming Guide

100

 4'b1001 << 1 = 0010
 4'b10x1 << 1 = 0x10
 4'b10z1 << 1 = 0z10
 4'b1001 >> 1 = 0100
 4'b10x1 >> 1 = 010x
 4'b10z1 >> 1 = 010z

Concatenation Operator

• Concatenations are expressed using the brace characters { and }, with commas separating the expressions within.
o Example: + {a, b[3:0], c, 4'b1001} // if a and c are 8-bit numbers, the results has 24 bits

• Unsized constant numbers are not allowed in concatenations.

Example

 1 module concatenation_operator();
 2

 3 initial begin

 4 // concatenation

 5 $display (" {4'b1001,4'b10x1} = %b", {4'b1001,4'b10x1});

 6 #10 $finish;

 7 end
 8

 9 endmodule

You could download file concatenation_operator.v here

 {4'b1001,4'b10x1} = 100110x1

Replication Operator

 Replication operator is used to replicate a group of bits n times. Say you have a 4 bit variable and you want to replicate it 4 times to get a 16 bit variable: then we can use the
replication operator.

 Operator Description

{n{m}} Replicate value m, n times

• Repetition multipliers (must be constants) can be used:

o {3{a}} // this is equivalent to {a, a, a}
• Nested concatenations and replication operator are possible:

http://www.asic-world.com/code/verilog_tutorial/concatenation_operator.v

 Verilog Programming Guide

101

o {b, {3{c, d}}} // this is equivalent to {b, c, d, c, d, c, d}

Example

 1 module replication_operator();
 2

 3 initial begin

 4 // replication

 5 $display (" {4{4'b1001}} = %b", {4{4'b1001}});

 6 // replication and concatenation

 7 $display (" {4{4'b1001,1'bz}} = %b", {4{4'b1001,1'bz}});

 8 #10 $finish;

 9 end
 10

 11 endmodule

You could download file replication_operator.v here

 {4{4'b1001} = 1001100110011001
 {4{4'b1001,1'bz} = 1001z1001z1001z1001z

Conditional Operators

• The conditional operator has the following C-like format:
o cond_expr ? true_expr : false_expr

• The true_expr or the false_expr is evaluated and used as a result depending on what cond_expr evaluates to (true or false).

Example

 1 module conditional_operator();
 2

 3 wire out;

 4 reg enable,data;

 5 // Tri state buffer

 6 assign out = (enable) ? data : 1'bz;
 7

 8 initial begin

 9 $display ("time\t enable data out");

 10 $monitor ("%g\t %b %b %b",$time,enable,data,out);

 11 enable = 0;

 12 data = 0;

 13 #1 data = 1;

http://www.asic-world.com/code/verilog_tutorial/replication_operator.v

 Verilog Programming Guide

102

 14 #1 data = 0;

 15 #1 enable = 1;

 16 #1 data = 1;

 17 #1 data = 0;

 18 #1 enable = 0;

 19 #10 $finish;

 20 end
 21

 22 endmodule

You could download file conditional_operator.v here

 time enable data out
 0 0 0 z
 1 0 1 z
 2 0 0 z
 3 1 0 0
 4 1 1 1
 5 1 0 0
 6 0 0 z

Operator Precedence

Operator Symbols

Unary, Multiply, Divide, Modulus !, ~, *, /, %

Add, Subtract, Shift +, - , <<, >>

Relation, Equality <,>,<=,>=,==,!=,===,!==

Reduction &, !&,^,^~,|,~|

Logic &&, ||

Conditional ? :

Verilog HDL
Abstraction
Levels

• Behavioral Models : Higher level of modeling where behavior of
logic is modeled.

• RTL Models : Logic is modeled at register level
• Structural Models : Logic is modeled at both register level and

gate level.

Procedural Blocks

http://www.asic-world.com/code/verilog_tutorial/conditional_operator.v

 Verilog Programming Guide

103

Verilog behavioral code is inside procedure blocks, but there is an
exception: some behavioral code also exist outside procedure blocks. We
can see this in detail as we make progress.

 There are two types of procedural blocks in Verilog:

• initial : initial blocks execute only once at time zero (start
execution at time zero).

• always : always blocks loop to execute over and over again; in
other words, as the name suggests, it executes always.

Example - initial

 1 module initial_example();

 2 reg clk,reset,enable,data;
 3

 4 initial begin

 5 clk = 0;

 6 reset = 0;

 7 enable = 0;

 8 data = 0;

 9 end
 10

 11 endmodule

You could download file initial_example.v here

In the above example, the initial block execution and always block
execution starts at time 0. Always block waits for the event, here positive
edge of clock, whereas initial block just executed all the statements within
begin and end statement, without waiting.

Example - always

 1 module always_example();

 2 reg clk,reset,enable,q_in,data;
 3

 4 always @ (posedge clk)

 5 if (reset) begin

 6 data <= 0;

 7 end else if (enable) begin

 8 data <= q_in;

 9 end

http://www.asic-world.com/code/verilog_tutorial/initial_example.v

 Verilog Programming Guide

104

 10

 11 endmodule

You could download file always_example.v here

In an always block, when the trigger event occurs, the code inside begin
and end is executed; then once again the always block waits for next event
triggering. This process of waiting and executing on event is repeated till
simulation stops.

Procedural Assignment Statements

• Procedural assignment statements assign values to reg, integer,
real, or time variables and can not assign values to nets (wire data
types)

• You can assign to a register (reg data type) the value of a net
(wire), constant, another register, or a specific value.

Example - Bad procedural assignment

 1 module initial_bad();

 2 reg clk,reset;

 3 wire enable,data;
 4

 5 initial begin

 6 clk = 0;

 7 reset = 0;

 8 enable = 0;

 9 data = 0;

 10 end
 11

 12 endmodule

You could download file initial_bad.v here

Example - Good procedural assignment

 1 module initial_good();

 2 reg clk,reset,enable,data;
 3

 4 initial begin

 5 clk = 0;

 6 reset = 0;

 7 enable = 0;

 8 data = 0;

http://www.asic-world.com/code/verilog_tutorial/always_example.v
http://www.asic-world.com/code/verilog_tutorial/initial_bad.v

 Verilog Programming Guide

105

 9 end
 10

 11 endmodule

You could download file initial_good.v here

Procedural Assignment Groups

 If a procedure block contains more than one statement, those statements
must be enclosed within

• Sequential begin - end block
• Parallel fork - join block

 When using begin-end, we can give name to that group. This is
called named blocks.

Example - "begin-end"

 1 module initial_begin_end();

 2 reg clk,reset,enable,data;
 3

 4 initial begin

 5 $monitor(

 6 "%g clk=%b reset=%b enable=%b data=%b",

 7 $time, clk, reset, enable, data);

 8 #1 clk = 0;

 9 #10 reset = 0;

 10 #5 enable = 0;

 11 #3 data = 0;

 12 #1 $finish;

 13 end
 14

 15 endmodule

You could download file initial_begin_end.v here

Begin : clk gets 0 after 1 time unit, reset gets 0 after 11 time units, enable
after 16 time units, data after 19 units. All the statements are executed
sequentially.

 Simulator Output

 0 clk=x reset=x enable=x data=x
 1 clk=0 reset=x enable=x data=x
 11 clk=0 reset=0 enable=x data=x
 16 clk=0 reset=0 enable=0 data=x

http://www.asic-world.com/code/verilog_tutorial/initial_good.v
http://www.asic-world.com/code/verilog_tutorial/initial_begin_end.v

 Verilog Programming Guide

106

 19 clk=0 reset=0 enable=0 data=0

Example - "fork-join"

 1 module initial_fork_join();

 2 reg clk,reset,enable,data;
 3

 4 initial begin

 5 $monitor("%g clk=%b reset=%b enable=%b data=%b",

 6 $time, clk, reset, enable, data);

 7 fork

 8 #1 clk = 0;

 9 #10 reset = 0;

 10 #5 enable = 0;

 11 #3 data = 0;

 12 join

 13 #1 $display ("%g Terminating simulation", $time);

 14 $finish;

 15 end
 16

 17 endmodule

You could download file initial_fork_join.v here

Fork : clk gets its value after 1 time unit, reset after 10 time units, enable
after 5 time units, data after 3 time units. All the statements are executed
in parallel.

 Simulator Output

 0 clk=x reset=x enable=x data=x
 1 clk=0 reset=x enable=x data=x
 3 clk=0 reset=x enable=x data=0
 5 clk=0 reset=x enable=0 data=0
 10 clk=0 reset=0 enable=0 data=0
 11 Terminating simulation

Sequential Statement Groups
 The begin - end keywords:

 • Group several statements together.
• Cause the statements to be evaluated sequentially (one at a time)

http://www.asic-world.com/code/verilog_tutorial/initial_fork_join.v

 Verilog Programming Guide

107

o Any timing within the sequential groups is relative to the
previous statement.

o Delays in the sequence accumulate (each delay is added to
the previous delay)

o Block finishes after the last statement in the block.

Example - sequential

 1 module sequential();
 2

 3 reg a;
 4

 5 initial begin

 6 $monitor ("%g a = %b", $time, a);

 7 #10 a = 0;

 8 #11 a = 1;

 9 #12 a = 0;

 10 #13 a = 1;

 11 #14 $finish;

 12 end
 13

 14 endmodule

You could download file sequential.v here

 Simulator Output

 0 a = x
 10 a = 0
 21 a = 1
 33 a = 0
 46 a = 1

Parallel Statement Groups
 The fork - join keywords:

• Group several statements together.
• Cause the statements to be evaluated in parallel (all at the same

time).
o Timing within parallel group is absolute to the beginning of

the group.

http://www.asic-world.com/code/verilog_tutorial/sequential.v

 Verilog Programming Guide

108

o Block finishes after the last statement completes
(Statement with highest delay, it can be the first statement
in the block).

Example - Parallel

 1 module parallel();
 2

 3 reg a;
 4

 5 initial

 6 fork

 7 $monitor ("%g a = %b", $time, a);

 8 #10 a = 0;

 9 #11 a = 1;

 10 #12 a = 0;

 11 #13 a = 1;

 12 #14 $finish;

 13 join
 14

 15 endmodule

You could download file parallel.v here

 Simulator Output

 0 a = x
 10 a = 0
 11 a = 1
 12 a = 0
 13 a = 1

Example - Mixing "begin-end" and "fork - join"

 1 module fork_join();
 2

 3 reg clk,reset,enable,data;
 4

 5 initial begin

 6 $display ("Starting simulation");

 7 $monitor("%g clk=%b reset=%b enable=%b data=%b",

 8 $time, clk, reset, enable, data);

 9 fork : FORK_VAL

 10 #1 clk = 0;

http://www.asic-world.com/code/verilog_tutorial/parallel.v

 Verilog Programming Guide

109

 11 #5 reset = 0;

 12 #5 enable = 0;

 13 #2 data = 0;

 14 join

 15 #10 $display ("%g Terminating simulation", $time);

 16 $finish;

 17 end
 18

 19 endmodule

You could download file fork_join.v here

 Simulator Output

 0 clk=x reset=x enable=x data=x
 1 clk=0 reset=x enable=x data=x
 2 clk=0 reset=x enable=x data=0
 5 clk=0 reset=0 enable=0 data=0
 15 Terminating simulation

Blocking and Nonblocking assignment

Blocking assignments are executed in the order they are coded, hence
they are sequential. Since they block the execution of next statment, till the
current statement is executed, they are called blocking assignments.
Assignment are made with "=" symbol. Example a = b;

Nonblocking assignments are executed in parallel. Since the execution of
next statement is not blocked due to execution of current statement, they
are called nonblocking statement. Assignments are made with "<="
symbol. Example a <= b;

 Note : Correct way to spell 'nonblocking' is 'nonblocking' and not 'non-
blocking'.

Example - blocking and nonblocking

 1 module blocking_nonblocking();
 2

 3 reg a,b,c,d;

 4 // Blocking Assignment

 5 initial begin

 6 #10 a = 0;

 7 #11 a = 1;

 8 #12 a = 0;

 9 #13 a = 1;

http://www.asic-world.com/code/verilog_tutorial/fork_join.v

 Verilog Programming Guide

110

 10 end
 11

 12 initial begin

 13 #10 b <= 0;

 14 #11 b <= 1;

 15 #12 b <= 0;

 16 #13 b <= 1;

 17 end
 18

 19 initial begin

 20 c = #10 0;

 21 c = #11 1;

 22 c = #12 0;

 23 c = #13 1;

 24 end
 25

 26 initial begin

 27 d <= #10 0;

 28 d <= #11 1;

 29 d <= #12 0;

 30 d <= #13 1;

 31 end
 32

 33 initial begin

 34 $monitor("TIME = %g A = %b B = %b C = %b D = %b",$time, a, b, c,
d);

 35 #50 $finish;

 36 end
 37

 38 endmodule

You could download file blocking_nonblocking.v here

 Simulator Output

 TIME = 0 A = x B = x C = x D = x
 TIME = 10 A = 0 B = 0 C = 0 D = 0
 TIME = 11 A = 0 B = 0 C = 0 D = 1
 TIME = 12 A = 0 B = 0 C = 0 D = 0
 TIME = 13 A = 0 B = 0 C = 0 D = 1
 TIME = 21 A = 1 B = 1 C = 1 D = 1
 TIME = 33 A = 0 B = 0 C = 0 D = 1
 TIME = 46 A = 1 B = 1 C = 1 D = 1

Waveform

http://www.asic-world.com/code/verilog_tutorial/blocking_nonblocking.v

 Verilog Programming Guide

111

assign and deassign

The assign and deassign procedural assignment statements allow
continuous assignments to be placed onto registers for controlled periods
of time. The assign procedural statement overrides procedural
assignments to a register. The deassign procedural statement ends a
continuous assignment to a register.

Example - assign and deassign

 1 module assign_deassign ();
 2

 3 reg clk,rst,d,preset;

 4 wire q;
 5

 6 initial begin

 7 $monitor("@%g clk %b rst %b preset %b d %b q %b",

 8 $time, clk, rst, preset, d, q);

 9 clk = 0;

 10 rst = 0;

 11 d = 0;

 12 preset = 0;

 13 #10 rst = 1;

 14 #10 rst = 0;

 15 repeat (10) begin

 16 @ (posedge clk);

 17 d <= $random;

 18 @ (negedge clk) ;

 19 preset <= ~preset;

 20 end

 21 #1 $finish;

 22 end

 23 // Clock generator

 24 always #1 clk = ~clk;
 25

 26 // assign and deassign q of flip flop module

 27 always @(preset)

 28 if (preset) begin

 Verilog Programming Guide

112

 29 assign U.q = 1; // assign procedural statement

 30 end else begin

 31 deassign U.q; // deassign procedural statement

 32 end
 33

 34 d_ff U (clk,rst,d,q);

 35

 36 endmodule
 37

 38 // D Flip-Flop model

 39 module d_ff (clk,rst,d,q);

 40 input clk,rst,d;

 41 output q;

 42 reg q;
 43

 44 always @ (posedge clk)

 45 if (rst) begin

 46 q <= 0;

 47 end else begin

 48 q <= d;

 49 end
 50

 51 endmodule

You could download file assign_deassign.v here

 Simulator Output

 @0 clk 0 rst 0 preset 0 d 0 q x
 @1 clk 1 rst 0 preset 0 d 0 q 0
 @2 clk 0 rst 0 preset 0 d 0 q 0
 @3 clk 1 rst 0 preset 0 d 0 q 0
 @4 clk 0 rst 0 preset 0 d 0 q 0
 @5 clk 1 rst 0 preset 0 d 0 q 0
 @6 clk 0 rst 0 preset 0 d 0 q 0
 @7 clk 1 rst 0 preset 0 d 0 q 0
 @8 clk 0 rst 0 preset 0 d 0 q 0
 @9 clk 1 rst 0 preset 0 d 0 q 0
 @10 clk 0 rst 1 preset 0 d 0 q 0
 @11 clk 1 rst 1 preset 0 d 0 q 0
 @12 clk 0 rst 1 preset 0 d 0 q 0
 @13 clk 1 rst 1 preset 0 d 0 q 0
 @14 clk 0 rst 1 preset 0 d 0 q 0
 @15 clk 1 rst 1 preset 0 d 0 q 0
 @16 clk 0 rst 1 preset 0 d 0 q 0
 @17 clk 1 rst 1 preset 0 d 0 q 0
 @18 clk 0 rst 1 preset 0 d 0 q 0
 @19 clk 1 rst 1 preset 0 d 0 q 0
 @20 clk 0 rst 0 preset 0 d 0 q 0
 @21 clk 1 rst 0 preset 0 d 0 q 0
 @22 clk 0 rst 0 preset 1 d 0 q 1

http://www.asic-world.com/code/verilog_tutorial/assign_deassign.v

 Verilog Programming Guide

113

 @23 clk 1 rst 0 preset 1 d 1 q 1
 @24 clk 0 rst 0 preset 0 d 1 q 1
 @25 clk 1 rst 0 preset 0 d 1 q 1
 @26 clk 0 rst 0 preset 1 d 1 q 1
 @27 clk 1 rst 0 preset 1 d 1 q 1
 @28 clk 0 rst 0 preset 0 d 1 q 1
 @29 clk 1 rst 0 preset 0 d 1 q 1
 @30 clk 0 rst 0 preset 1 d 1 q 1
 @31 clk 1 rst 0 preset 1 d 1 q 1
 @32 clk 0 rst 0 preset 0 d 1 q 1
 @33 clk 1 rst 0 preset 0 d 1 q 1
 @34 clk 0 rst 0 preset 1 d 1 q 1
 @35 clk 1 rst 0 preset 1 d 0 q 1
 @36 clk 0 rst 0 preset 0 d 0 q 1
 @37 clk 1 rst 0 preset 0 d 1 q 0
 @38 clk 0 rst 0 preset 1 d 1 q 1
 @39 clk 1 rst 0 preset 1 d 1 q 1
 @40 clk 0 rst 0 preset 0 d 1 q 1

force and release

Another form of procedural continuous assignment is provided by the force
and release procedural statements. These statements have a similar effect
on the assign-deassign pair, but a force can be applied to nets as well as
to registers.

One can use force and release while doing gate level simulation to work
around reset connectivity problems. Also can be used insert single and
double bit errors on data read from memory.

Example - force and release

 1 module force_release ();
 2

 3 reg clk,rst,d,preset;

 4 wire q;
 5

 6 initial begin

 7 $monitor("@%g clk %b rst %b preset %b d %b q %b",

 8 $time, clk, rst, preset, d, q);

 9 clk = 0;

 10 rst = 0;

 11 d = 0;

 12 preset = 0;

 13 #10 rst = 1;

 14 #10 rst = 0;

 Verilog Programming Guide

114

 15 repeat (10) begin

 16 @ (posedge clk);

 17 d <= $random;

 18 @ (negedge clk) ;

 19 preset <= ~preset;

 20 end

 21 #1 $finish;

 22 end

 23 // Clock generator

 24 always #1 clk = ~clk;
 25

 26 // force and release of flip flop module

 27 always @(preset)

 28 if (preset) begin

 29 force U.q = preset; // force procedural statement

 30 end else begin

 31 release U.q; // release procedural statement

 32 end
 33

 34 d_ff U (clk,rst,d,q);

 35

 36 endmodule
 37

 38 // D Flip-Flop model

 39 module d_ff (clk,rst,d,q);

 40 input clk,rst,d;

 41 output q;

 42 wire q;

 43 reg q_reg;
 44

 45 assign q = q_reg;
 46

 47 always @ (posedge clk)

 48 if (rst) begin

 49 q_reg <= 0;

 50 end else begin

 51 q_reg <= d;

 52 end
 53

 54 endmodule

You could download file force_release.v here

 Simulator Output

 @0 clk 0 rst 0 preset 0 d 0 q x
 @1 clk 1 rst 0 preset 0 d 0 q 0
 @2 clk 0 rst 0 preset 0 d 0 q 0
 @3 clk 1 rst 0 preset 0 d 0 q 0

http://www.asic-world.com/code/verilog_tutorial/force_release.v

 Verilog Programming Guide

115

 @4 clk 0 rst 0 preset 0 d 0 q 0
 @5 clk 1 rst 0 preset 0 d 0 q 0
 @6 clk 0 rst 0 preset 0 d 0 q 0
 @7 clk 1 rst 0 preset 0 d 0 q 0
 @8 clk 0 rst 0 preset 0 d 0 q 0
 @9 clk 1 rst 0 preset 0 d 0 q 0
 @10 clk 0 rst 1 preset 0 d 0 q 0
 @11 clk 1 rst 1 preset 0 d 0 q 0
 @12 clk 0 rst 1 preset 0 d 0 q 0
 @13 clk 1 rst 1 preset 0 d 0 q 0
 @14 clk 0 rst 1 preset 0 d 0 q 0
 @15 clk 1 rst 1 preset 0 d 0 q 0
 @16 clk 0 rst 1 preset 0 d 0 q 0
 @17 clk 1 rst 1 preset 0 d 0 q 0
 @18 clk 0 rst 1 preset 0 d 0 q 0
 @19 clk 1 rst 1 preset 0 d 0 q 0
 @20 clk 0 rst 0 preset 0 d 0 q 0
 @21 clk 1 rst 0 preset 0 d 0 q 0
 @22 clk 0 rst 0 preset 1 d 0 q 1
 @23 clk 1 rst 0 preset 1 d 1 q 1
 @24 clk 0 rst 0 preset 0 d 1 q 0
 @25 clk 1 rst 0 preset 0 d 1 q 1
 @26 clk 0 rst 0 preset 1 d 1 q 1
 @27 clk 1 rst 0 preset 1 d 1 q 1
 @28 clk 0 rst 0 preset 0 d 1 q 1
 @29 clk 1 rst 0 preset 0 d 1 q 1
 @30 clk 0 rst 0 preset 1 d 1 q 1
 @31 clk 1 rst 0 preset 1 d 1 q 1
 @32 clk 0 rst 0 preset 0 d 1 q 1
 @33 clk 1 rst 0 preset 0 d 1 q 1
 @34 clk 0 rst 0 preset 1 d 1 q 1
 @35 clk 1 rst 0 preset 1 d 0 q 1
 @36 clk 0 rst 0 preset 0 d 0 q 1
 @37 clk 1 rst 0 preset 0 d 1 q 0
 @38 clk 0 rst 0 preset 1 d 1 q 1
 @39 clk 1 rst 0 preset 1 d 1 q 1
 @40 clk 0 rst 0 preset 0 d 1 q 1

The
Conditional
Statement if-
else

 Verilog Programming Guide

116

 1 module simple_if();
 2

 3 reg latch;

 4 wire enable,din;
 5

 6 always @ (enable or din)

 7 if (enable) begin

 8 latch <= din;

 9 end
 10

 11 endmodule

You could download file simple_if.v here

 1 module if_else();
 2

http://www.asic-world.com/code/verilog_tutorial/simple_if.v

 Verilog Programming Guide

117

 4 wire clk,din,reset;
 5

 6 always @ (posedge clk)

 7 if (reset) begin

 8 dff <= 0;

 9 end else begin

 10 dff <= din;

 11 end
 12

 13 endmodule

You could download file if_else.v here

 1 module nested_if();
 2

 3 reg [3:0] counter;

 4 reg clk,reset,enable, up_en,
down_en;

 5

 6 always @ (posedge clk)

 7 // If reset is asserted

 8 if (reset == 1'b0) begin

 9 counter <= 4'b0000;

 10 // If counter is enable and up count is

asserted
 11 end else if (enable == 1'b1 &&

up_en == 1'b1) begin

 12 counter <= counter + 1'b1;

 13 // If counter is enable and down count

is asserted
 14 end else if (enable == 1'b1 &&

down_en == 1'b1) begin

 15 counter <= counter - 1'b1;

 16 // If counting is disabled

 17 end else begin

 18 counter <= counter; //

Redundant code
 19 end
 20

 21 // Testbench code

 22 initial begin

 23 $monitor ("@%0dns reset=%b

enable=%b up=%b down=%b count=%b",

 24 $time, reset,
enable, up_en, down_en,counter);

http://www.asic-world.com/code/verilog_tutorial/if_else.v

 Verilog Programming Guide

118

inputs to know state",$time);

 26 clk = 0;

 27 reset = 0;

 28 enable = 0;

 29 up_en = 0;

 30 down_en = 0;

 31 #3 reset = 1;

 32 $display("@%0dns De-Asserting

reset",$time);

 33 #4 enable = 1;

 34 $display("@%0dns De-Asserting

reset",$time);

 35 #4 up_en = 1;

 36 $display("@%0dns Putting counter

in up count mode",$time);

 37 #10 up_en = 0;

 38 down_en = 1;

 39 $display("@%0dns Putting counter

in down count mode",$time);

 40 #8 $finish;

 41 end
 42

 43 always #1 clk = ~clk;
 44

 45 endmodule

You could download file nested_if.v here

 @0ns reset=0 enable=0 up=0 down=0
count=xxxx
 @1ns reset=0 enable=0 up=0 down=0
count=0000
 @3ns De-Asserting reset
 @3ns reset=1 enable=0 up=0 down=0
count=0000
 @7ns De-Asserting reset
 @7ns reset=1 enable=1 up=0 down=0
count=0000
 @11ns Putting counter in up count mode
 @11ns reset=1 enable=1 up=1 down=0
count=0001
 @13ns reset=1 enable=1 up=1 down=0
count=0010
 @15ns reset=1 enable=1 up=1 down=0
count=0011

http://www.asic-world.com/code/verilog_tutorial/nested_if.v

 Verilog Programming Guide

119

count=0100
 @19ns reset=1 enable=1 up=1 down=0
count=0101
 @21ns Putting counter in down count mode
 @21ns reset=1 enable=1 up=0 down=1
count=0100
 @23ns reset=1 enable=1 up=0 down=1
count=0011
 @25ns reset=1 enable=1 up=0 down=1
count=0010
 @27ns reset=1 enable=1 up=0 down=1
count=0001

 Verilog Programming Guide

120

 1 module parallel_if();
 2

 3 reg [3:0] counter;

 4 wire clk,reset,enable, up_en,
down_en;

 5

 6 always @ (posedge clk)

 7 // If reset is asserted

 8 if (reset == 1'b0) begin

 9 counter <= 4'b0000;

 10 end else begin

 11 // If counter is enable and up count

is mode
 12 if (enable == 1'b1 && up_en ==

1'b1) begin

 13 counter <= counter + 1'b1;

 14 end

 15 // If counter is enable and down

count is mode
 16 if (enable == 1'b1 && down_en

== 1'b1) begin

 17 counter <= counter - 1'b1;

 18 end

 19 end
 20

 21 endmodule

You could download file parallel_if.v here

or multiple statements.

http://www.asic-world.com/code/verilog_tutorial/parallel_if.v

 Verilog Programming Guide

121

using begin and end keywords.

 1 module mux (a,b,c,d,sel,y);

 2 input a, b, c, d;

 3 input [1:0] sel;

 4 output y;
 5

 6 reg y;
 7

 8 always @ (a or b or c or d or
sel)

 9 case (sel)

 10 0 : y = a;

 11 1 : y = b;

 12 2 : y = c;

 13 3 : y = d;

 14 default : $display("Error in SEL");

 15 endcase
 16

 17 endmodule

You could download file mux.v here

 1 module mux_without_default
(a,b,c,d,sel,y);

 2 input a, b, c, d;

 3 input [1:0] sel;

http://www.asic-world.com/code/verilog_tutorial/mux.v

 Verilog Programming Guide

122

 5

 6 reg y;
 7

 8 always @ (a or b or c or d or
sel)

 9 case (sel)

 10 0 : y = a;

 11 1 : y = b;

 12 2 : y = c;

 13 3 : y = d;
 14

2'bxx,2'bx0,2'bx1,2'b0x,2'b1x,

 15

2'bzz,2'bz0,2'bz1,2'b0z,2'b1z :

$display("Error in SEL");

 16 endcase
 17

 18 endmodule

You could download file
mux_without_default.v here

 1 module case_xz(enable);

 2 input enable;
 3

 4 always @ (enable)

 5 case(enable)

 6 1'bz : $display ("enable is

floating");

 7 1'bx : $display ("enable is

unknown");

 8 default : $display ("enable is

%b",enable);

 9 endcase

http://www.asic-world.com/code/verilog_tutorial/mux_without_default.v

 Verilog Programming Guide

123

 11 endmodule

You could download file case_xz.v here

 • casex : Treats x and z as don't
care.

 1 module casez_example();

 2 reg [3:0] opcode;

 3 reg [1:0] a,b,c;

 4 reg [1:0] out;
 5

 6 always @ (opcode or a or b or
c)

 7 casez(opcode)

 8 4'b1zzx : begin // Don't care

about lower 2:1 bit, bit 0 match with x
 9 out = a;

 10 $display("@%0dns

4'b1zzx is selected, opcode
%b",$time,opcode);

 11 end

 12 4'b01?? : begin

 13 out = b; // bit 1:0 is

don't care
 14 $display("@%0dns

4'b01?? is selected, opcode
%b",$time,opcode);

 15 end

 16 4'b001? : begin // bit 0 is don't

care
 17 out = c;

 18 $display("@%0dns

4'b001? is selected, opcode
%b",$time,opcode);

 19 end

 20 default : begin

http://www.asic-world.com/code/verilog_tutorial/case_xz.v

 Verilog Programming Guide

124

default is selected, opcode
%b",$time,opcode);

 22 end

 23 endcase
 24

 25 // Testbench code goes here

 26 always #2 a = $random;

 27 always #2 b = $random;

 28 always #2 c = $random;

 29

 30 initial begin

 31 opcode = 0;

 32 #2 opcode = 4'b101x;

 33 #2 opcode = 4'b0101;

 34 #2 opcode = 4'b0010;

 35 #2 opcode = 4'b0000;

 36 #2 $finish;

 37 end
 38

 39 endmodule

You could download file
casez_example.v here

 @2ns 4'b1zzx is selected, opcode 101x
 @4ns 4'b01?? is selected, opcode 0101
 @6ns 4'b001? is selected, opcode 0010
 @8ns default is selected, opcode 0000

 1 module casex_example();

 2 reg [3:0] opcode;

 3 reg [1:0] a,b,c;

 4 reg [1:0] out;
 5

 6 always @ (opcode or a or b or
c)

 7 casex(opcode)

 8 4'b1zzx : begin // Don't care 2:0

bits
 9 out = a;

http://www.asic-world.com/code/verilog_tutorial/casez_example.v

 Verilog Programming Guide

125

4'b1zzx is selected, opcode
%b",$time,opcode);

 11 end

 12 4'b01?? : begin // bit 1:0 is don't

care
 13 out = b;

 14 $display("@%0dns

4'b01?? is selected, opcode
%b",$time,opcode);

 15 end

 16 4'b001? : begin // bit 0 is don't

care
 17 out = c;

 18 $display("@%0dns

4'b001? is selected, opcode
%b",$time,opcode);

 19 end

 20 default : begin

 21 $display("@%0dns

default is selected, opcode
%b",$time,opcode);

 22 end

 23 endcase
 24

 25 // Testbench code goes here

 26 always #2 a = $random;

 27 always #2 b = $random;

 28 always #2 c = $random;

 29

 30 initial begin

 31 opcode = 0;

 32 #2 opcode = 4'b101x;

 33 #2 opcode = 4'b0101;

 34 #2 opcode = 4'b0010;

 35 #2 opcode = 4'b0000;

 36 #2 $finish;

 37 end
 38

 39 endmodule

You could download file
casex_example.v here

 @2ns 4'b1zzx is selected, opcode 101x
 @4ns 4'b01?? is selected, opcode 0101

http://www.asic-world.com/code/verilog_tutorial/casex_example.v

 Verilog Programming Guide

126

 @8ns default is selected, opcode 0000

 1 module case_compare;
 2

 3 reg sel;
 4

 5 initial begin

 6 #1 $display ("\n Driving 0");

 7 sel = 0;

 8 #1 $display ("\n Driving 1");

 9 sel = 1;

 10 #1 $display ("\n Driving x");

 11 sel = 1'bx;

 12 #1 $display ("\n Driving z");

 13 sel = 1'bz;

 14 #1 $finish;

 15 end
 16

 17 always @ (sel)

 18 case (sel)

 19 1'b0 : $display("Normal : Logic 0

on sel");

 20 1'b1 : $display("Normal : Logic 1

on sel");

 21 1'bx : $display("Normal : Logic x

on sel");

 22 1'bz : $display("Normal : Logic z

on sel");

 23 endcase
 24

 25 always @ (sel)

 26 casex (sel)

 27 1'b0 : $display("CASEX : Logic 0

on sel");

 28 1'b1 : $display("CASEX : Logic 1

on sel");

 29 1'bx : $display("CASEX : Logic x

on sel");

 30 1'bz : $display("CASEX : Logic z

on sel");

 31 endcase
 32

 Verilog Programming Guide

127

 34 casez (sel)

 35 1'b0 : $display("CASEZ : Logic 0

on sel");

 36 1'b1 : $display("CASEZ : Logic 1

on sel");

 37 1'bx : $display("CASEZ : Logic x

on sel");

 38 1'bz : $display("CASEZ : Logic z

on sel");

 39 endcase
 40

 41 endmodule

You could download file case_compare.v here

 Normal : Logic 0 on sel
 CASEX : Logic 0 on sel
 CASEZ : Logic 0 on sel

 Driving 1
 Normal : Logic 1 on sel
 CASEX : Logic 1 on sel
 CASEZ : Logic 1 on sel

 Driving x
 Normal : Logic x on sel
 CASEX : Logic 0 on sel
 CASEZ : Logic x on sel

 Driving z
 Normal : Logic z on sel
 CASEX : Logic 0 on sel
 CASEZ : Logic 0 on sel

Looping
Statements

 • repeat
• while

http://www.asic-world.com/code/verilog_tutorial/case_compare.v

 Verilog Programming Guide

128

 1 module forever_example ();
 2

 3 reg clk;
 4

 5 initial begin

 6 #1 clk = 0;

 7 forever begin

 8 #5 clk = ! clk;

 9 end

 10 end
 11

 12 initial begin

 13 $monitor ("Time = %d clk =

%b",$time, clk);

 14 #100 $finish;

 15 end
 16

 17 endmodule

You could download file
forever_example.v here

http://www.asic-world.com/code/verilog_tutorial/forever_example.v

 Verilog Programming Guide

129

 1 module repeat_example();

 2 reg [3:0] opcode;

 3 reg [15:0] data;

 4 reg temp;
 5

 6 always @ (opcode or data)

 7 begin

 8 if (opcode == 10) begin

 9 // Perform rotate

 10 repeat (8) begin

 11 #1 temp = data[15];

 12 data = data << 1;

 13 data[0] = temp;

 14 end

 15 end

 16 end

 17 // Simple test code

 18 initial begin

 19 $display (" TEMP DATA");

 20 $monitor (" %b %b ",temp,
data);

 21 #1 data = 18'hF0;

 22 #1 opcode = 10;

 23 #10 opcode = 0;

 24 #1 $finish;

 25 end
 26

 27 endmodule

You could download file
repeat_example.v here

http://www.asic-world.com/code/verilog_tutorial/repeat_example.v

 Verilog Programming Guide

130

 1 module while_example();
 2

 3 reg [5:0] loc;

 4 reg [7:0] data;
 5

 6 always @ (data or loc)

 7 begin

 8 loc = 0;

 9 // If Data is 0, then loc is 32 (invalid

value)
 10 if (data == 0) begin

 11 loc = 32;

 12 end else begin

 13 while (data[0] == 0) begin

 14 loc = loc + 1;

 15 data = data >> 1;

 16 end

 17 end

 18 $display ("DATA = %b

LOCATION = %d",data,loc);

 19 end
 20

 21 initial begin

 22 #1 data = 8'b11;

 23 #1 data = 8'b100;

 24 #1 data = 8'b1000;

 25 #1 data = 8'b1000_0000;

 26 #1 data = 8'b0;

 27 #1 $finish;

 28 end
 29

 30 endmodule

You could download file while_example.v here

http://www.asic-world.com/code/verilog_tutorial/while_example.v

 Verilog Programming Guide

131

assignment > once at the start
of the loop.

• Executes the loop as long as
an < expression > evaluates as
true.

• Executes a < step assignment
> at the end of each pass
through the loop.

 1 module for_example();
 2

 3 integer i;

 4 reg [7:0] ram [0:255];
 5

 6 initial begin

 7 for (i = 0; i < 256; i = i + 1)

begin
 8 #1 $display(" Address = %g

Data = %h",i,ram[i]);

 9 ram[i] <= 0; // Initialize the

RAM with 0
 10 #1 $display(" Address = %g

Data = %h",i,ram[i]);

 11 end

 12 #1 $finish;

 13 end
 14

 15 endmodule

You could download file for_example.v here

http://www.asic-world.com/code/verilog_tutorial/for_example.v

 Verilog Programming Guide

132

Continuous
Assignment
Statements

 Continuous assignment statements drive nets (wire data type). They
represent structural connections.

• They are used for modeling Tri-State buffers.
• They can be used for modeling combinational logic.
• They are outside the procedural blocks (always and initial

blocks).
• The continuous assign overrides any procedural assignments.
• The left-hand side of a continuous assignment must be net

data type.

• syntax : assign (strength, strength) #(delay) net = expression;

Example - One bit Adder

 1 module adder_using_assign ();

 2 reg a, b;

 3 wire sum, carry;
 4

 5 assign #5 {carry,sum} = a+b;
 6

 7 initial begin

 8 $monitor (" A = %b B = %b CARRY = %b SUM =

%b",a,b,carry,sum);

 9 #10 a = 0;

 10 b = 0;

 11 #10 a = 1;

 12 #10 b = 1;

 13 #10 a = 0;

 14 #10 b = 0;

 15 #10 $finish;

 16 end
 17

 18 endmodule

You could download file adder_using_assign.v here

Example - Tri-state buffer

 1 module tri_buf_using_assign();

http://www.asic-world.com/code/verilog_tutorial/adder_using_assign.v

 Verilog Programming Guide

133

 2 reg data_in, enable;

 3 wire pad;
 4

 5 assign pad = (enable) ? data_in : 1'bz;
 6

 7 initial begin

 8 $monitor ("TIME = %g ENABLE = %b DATA : %b PAD %b",

 9 $time, enable, data_in, pad);

 10 #1 enable = 0;

 11 #1 data_in = 1;

 12 #1 enable = 1;

 13 #1 data_in = 0;

 14 #1 enable = 0;

 15 #1 $finish;

 16 end
 17

 18 endmodule

You could download file tri_buf_using_assign.v here

Propagation Delay

Continuous Assignments may have a delay specified; only one delay
for all transitions may be specified. A minimum:typical:maximum delay
range may be specified.

Example - Tri-state buffer

 1 module tri_buf_using_assign_delays();

 2 reg data_in, enable;

 3 wire pad;
 4

 5 assign #(1:2:3) pad = (enable) ? data_in : 1'bz;
 6

 7 initial begin

 8 $monitor ("ENABLE = %b DATA : %b PAD %b",enable,
data_in,pad);

 9 #10 enable = 0;

 10 #10 data_in = 1;

 11 #10 enable = 1;

 12 #10 data_in = 0;

 13 #10 enable = 0;

 14 #10 $finish;

 15 end
 16

 17 endmodule

You could download file tri_buf_using_assign_delays.v here

http://www.asic-world.com/code/verilog_tutorial/tri_buf_using_assign.v
http://www.asic-world.com/code/verilog_tutorial/tri_buf_using_assign_delays.v

 Verilog Programming Guide

134

Procedural
Block Control

 Procedural blocks become active at simulation time zero. Use level
sensitive event controls to control the execution of a procedure.

 1 module dlatch_using_always();

 2 reg q;
 3

 4 reg d, enable;
 5

 6 always @ (d or enable)

 7 if (enable) begin

 8 q = d;

 9 end
 10

 11 initial begin

 12 $monitor (" ENABLE = %b D = %b Q = %b",enable,d,q);

 13 #1 enable = 0;

 14 #1 d = 1;

 15 #1 enable = 1;

 16 #1 d = 0;

 17 #1 d = 1;

 18 #1 d = 0;

 19 #1 enable = 0;

 20 #10 $finish;

 21 end
 22

 23 endmodule

You could download file dlatch_using_always.v here

Any change in either d or enable satisfies the event control and allows
the execution of the statements in the procedure. The procedure is
sensitive to any change in d or enable.

Combo Logic using Procedural Coding

To model combinational logic, a procedure block must be sensitive to any
change on the input. There is one important rule that needs to be followed
while modeling combinational logic. If you use conditional checking using
"if", then you need to mention the "else" part. Missing the else part results
in a latch. If you don't like typing the else part, then you must initialize all
the variables of that combo block as soon as it enters.

Example - One bit Adder

http://www.asic-world.com/code/verilog_tutorial/dlatch_using_always.v

 Verilog Programming Guide

135

 1 module adder_using_always ();

 2 reg a, b;

 3 reg sum, carry;
 4

 5 always @ (a or b)

 6 begin

 7 {carry,sum} = a + b;

 8 end
 9

 10 initial begin

 11 $monitor (" A = %b B = %b CARRY = %b SUM =

%b",a,b,carry,sum);

 12 #10 a = 0;

 13 b = 0;

 14 #10 a = 1;

 15 #10 b = 1;

 16 #10 a = 0;

 17 #10 b = 0;

 18 #10 $finish;

 19 end
 20

 21 endmodule

You could download file adder_using_always.v here

 The statements within the procedural block work with entire vectors at a
time.

Example - 4-bit Adder

 1 module adder_4_bit_using_always ();

 2 reg[3:0] a, b;

 3 reg [3:0] sum;

 4 reg carry;
 5

 6 always @ (a or b)

 7 begin

 8 {carry,sum} = a + b;

 9 end
 10

 11 initial begin

 12 $monitor (" A = %b B = %b CARRY = %b SUM =

%b",a,b,carry,sum);

 13 #10 a = 8;

 14 b = 7;

 15 #10 a = 10;

 16 #10 b = 15;

 17 #10 a = 0;

http://www.asic-world.com/code/verilog_tutorial/adder_using_always.v

 Verilog Programming Guide

136

 18 #10 b = 0;

 19 #10 $finish;

 20 end
 21

 22 endmodule

You could download file adder_4_bit_using_always.v here

Example - Ways to avoid Latches - Cover all conditions

 1 module avoid_latch_else ();
 2

 3 reg q;

 4 reg enable, d;
 5

 6 always @ (enable or d)

 7 if (enable) begin

 8 q = d;

 9 end else begin

 10 q = 0;

 11 end
 12

 13 initial begin

 14 $monitor (" ENABLE = %b D = %b Q = %b",enable,d,q);

 15 #1 enable = 0;

 16 #1 d = 0;

 17 #1 enable = 1;

 18 #1 d = 1;

 19 #1 d = 0;

 20 #1 d = 1;

 21 #1 d = 0;

 22 #1 d = 1;

 23 #1 enable = 0;

 24 #1 $finish;

 25 end
 26

 27 endmodule

You could download file avoid_latch_else.v here

Example - Ways to avoid Latches - Snit the variables to zero

 1 module avoid_latch_init ();
 2

 3 reg q;

 4 reg enable, d;
 5

 6 always @ (enable or d)

http://www.asic-world.com/code/verilog_tutorial/adder_4_bit_using_always.v
http://www.asic-world.com/code/verilog_tutorial/avoid_latch_else.v

 Verilog Programming Guide

137

 7 begin

 8 q = 0;

 9 if (enable) begin

 10 q = d;

 11 end

 12 end
 13

 14 initial begin

 15 $monitor (" ENABLE = %b D = %b Q = %b",enable,d,q);

 16 #1 enable = 0;

 17 #1 d = 0;

 18 #1 enable = 1;

 19 #1 d = 1;

 20 #1 d = 0;

 21 #1 d = 1;

 22 #1 d = 0;

 23 #1 d = 1;

 24 #1 enable = 0;

 25 #1 $finish;

 26 end
 27

 28 endmodule

You could download file avoid_latch_init.v here

Sequential Logic using Procedural Coding

To model sequential logic, a procedure block must be sensitive to positive
edge or negative edge of clock. To model asynchronous reset, procedure
block must be sensitive to both clock and reset. All the assignments to
sequential logic should be made through nonblocking assignments.

Sometimes it's tempting to have multiple edge triggering variables in the
sensitive list: this is fine for simulation. But for synthesis this does not
make sense, as in real life, flip-flop can have only one clock, one reset
and one preset (i.e. posedge clk or posedge reset or posedge preset).

One common mistake the new beginner makes is using clock as the
enable input to flip-flop. This is fine for simulation, but for synthesis, this
is not right.

Example - Bad coding - Using two clocks

 1 module wrong_seq();
 2

 3 reg q;

http://www.asic-world.com/code/verilog_tutorial/avoid_latch_init.v

 Verilog Programming Guide

138

 4 reg clk1, clk2, d1, d2;
 5

 6 always @ (posedge clk1 or posedge clk2)

 7 if (clk1) begin

 8 q <= d1;

 9 end else if (clk2) begin

 10 q <= d2;

 11 end
 12

 13 initial begin

 14 $monitor ("CLK1 = %b CLK2 = %b D1 = %b D2 %b Q = %b",
 15 clk1, clk2, d1, d2, q);

 16 clk1 = 0;

 17 clk2 = 0;

 18 d1 = 0;

 19 d2 = 1;

 20 #10 $finish;

 21 end
 22

 23 always

 24 #1 clk1 = ~clk1;
 25

 26 always

 27 #1.9 clk2 = ~clk2;
 28

 29 endmodule

You could download file wrong_seq.v here

Example - D Flip-flop with async reset and async preset

 1 module dff_async_reset_async_preset();
 2

 3 reg clk,reset,preset,d;

 4 reg q;
 5

 6 always @ (posedge clk or posedge reset or posedge preset)

 7 if (reset) begin

 8 q <= 0;

 9 end else if (preset) begin

 10 q <= 1;

 11 end else begin

 12 q <= d;

 13 end
 14

 15 // Testbench code here

 16 initial begin

 17 $monitor("CLK = %b RESET = %b PRESET = %b D = %b Q = %b",

http://www.asic-world.com/code/verilog_tutorial/wrong_seq.v

 Verilog Programming Guide

139

 18 clk,reset,preset,d,q);

 19 clk = 0;

 20 #1 reset = 0;

 21 preset = 0;

 22 d = 0;

 23 #1 reset = 1;

 24 #2 reset = 0;

 25 #2 preset = 1;

 26 #2 preset = 0;

 27 repeat (4) begin

 28 #2 d = ~d;

 29 end

 30 #2 $finish;

 31 end
 32

 33 always

 34 #1 clk = ~clk;
 35

 36 endmodule

You could download file dff_async_reset_async_preset.v here

Example - D Flip-flop with sync reset and sync preset

 1 module dff_sync_reset_sync_preset();
 2

 3 reg clk,reset,preset,d;

 4 reg q;
 5

 6 always @ (posedge clk)

 7 if (reset) begin

 8 q <= 0;

 9 end else if (preset) begin

 10 q <= 1;

 11 end else begin

 12 q <= d;

 13 end
 14

 15 // Testbench code here

 16 initial begin

 17 $monitor("CLK = %b RESET = %b PRESET = %b D = %b Q = %b",
 18 clk,reset,preset,d,q);

 19 clk = 0;

 20 #1 reset = 0;

 21 preset = 0;

 22 d = 0;

 23 #1 reset = 1;

 24 #2 reset = 0;

http://www.asic-world.com/code/verilog_tutorial/dff_async_reset_async_preset.v

 Verilog Programming Guide

140

 25 #2 preset = 1;

 26 #2 preset = 0;

 27 repeat (4) begin

 28 #2 d = ~d;

 29 end

 30 #2 $finish;

 31 end
 32

 33 always

 34 #1 clk = ~clk;
 35

 36 endmodule

You could download file dff_sync_reset_sync_preset.v here

A procedure can't trigger itself

 One cannot trigger the block with a variable that block assigns value or
drives.

 1 module trigger_itself();
 2

 3 reg clk;
 4

 5 always @ (clk)

 6 #5 clk = ! clk;
 7

 8 // Testbench code here

 9 initial begin

 10 $monitor("TIME = %d CLK = %b",$time,clk);

 11 clk = 0;

 12 #500 $display("TIME = %d CLK = %b",$time,clk);

 13 $finish;

 14 end
 15

 16 endmodule

You could download file trigger_itself.v here

Procedural Block Concurrency

If we have multiple always blocks inside one module, then all the blocks
(i.e. all the always blocks and initial blocks) will start executing at time 0
and will continue to execute concurrently. Sometimes this leads to race
conditions, if coding is not done properly.

 1 module multiple_blocks ();

 2 reg a,b;

http://www.asic-world.com/code/verilog_tutorial/dff_sync_reset_sync_preset.v
http://www.asic-world.com/code/verilog_tutorial/trigger_itself.v

 Verilog Programming Guide

141

 3 reg c,d;

 4 reg clk,reset;

 5 // Combo Logic

 6 always @ (c)

 7 begin

 8 a = c;

 9 end

 10 // Seq Logic

 11 always @ (posedge clk)

 12 if (reset) begin

 13 b <= 0;

 14 end else begin

 15 b <= a & d;

 16 end
 17

 18 // Testbench code here

 19 initial begin

 20 $monitor("TIME = %d CLK = %b C = %b D = %b A = %b B = %b",

 21 $time, clk,c,d,a,b);

 22 clk = 0;

 23 reset = 0;

 24 c = 0;

 25 d = 0;

 26 #2 reset = 1;

 27 #2 reset = 0;

 28 #2 c = 1;

 29 #2 d = 1;

 30 #2 c = 0;

 31 #5 $finish;

 32 end

 33 // Clock generator

 34 always

 35 #1 clk = ~clk;
 36

 37 endmodule

You could download file multiple_blocks.v here

Race condition

 1 module race_condition();

 2 reg b;
 3

 4 initial begin

 5 b = 0;

 6 end
 7

http://www.asic-world.com/code/verilog_tutorial/multiple_blocks.v

 Verilog Programming Guide

142

 8 initial begin

 9 b = 1;

 10 end
 11

 12 endmodule

You could download file race_condition.v here

In the code above it is difficult to say the value of b, as both blocks are
supposed to execute at same time. In Verilog, if care is not taken, a race
condition is something that occurs very often.

Named Blocks

 Blocks can be named by adding : block_name after the keyword begin.
Named blocks can be disabled using the 'disable' statement.

Example - Named Blocks

 1 // This code find the lowest bit set

 2 module named_block_disable();
 3

 4 reg [31:0] bit_detect;

 5 reg [5:0] bit_position;

 6 integer i;
 7

 8 always @ (bit_detect)

 9 begin : BIT_DETECT

 10 for (i = 0; i < 32 ; i = i + 1) begin

 11 // If bit is set, latch the bit position

 12 // Disable the execution of the block

 13 if (bit_detect[i] == 1) begin

 14 bit_position = i;

 15 disable BIT_DETECT;

 16 end else begin

 17 bit_position = 32;

 18 end

 19 end

 20 end
 21

 22 // Testbench code here

 23 initial begin

 24 $monitor(" INPUT = %b MIN_POSITION = %d", bit_detect,
bit_position);

 25 #1 bit_detect = 32'h1000_1000;

 26 #1 bit_detect = 32'h1100_0000;

 27 #1 bit_detect = 32'h1000_1010;

http://www.asic-world.com/code/verilog_tutorial/race_condition.v

 Verilog Programming Guide

143

 28 #10 $finish;

 29 end
 30

 31 endmodule

You could download file named_block_disable.v here

 In the example above, BIT_DETECT is the named block and it is disabled
whenever the bit position is detected.

Procedural
blocks and
timing
controls.

• Delay controls.
• Edge-Sensitive Event controls.
• Level-Sensitive Event controls-Wait statements.
• Named Events.

Delay Controls

 Delays the execution of a procedural statement by specific simulation
time.

 #< time > < statement >;

Example - clk_gen

 1 module clk_gen ();
 2

 3 reg clk, reset;
 4

 5 initial begin

 6 $monitor ("TIME = %g RESET = %b CLOCK = %b", $time,
reset, clk);

 7 clk = 0;

 8 reset = 0;

 9 #2 reset = 1;

 10 #5 reset = 0;

 11 #10 $finish;

 12 end
 13

 14 always

 15 #1 clk = ! clk;
 16

http://www.asic-world.com/code/verilog_tutorial/named_block_disable.v

 Verilog Programming Guide

144

 17 endmodule

You could download file clk_gen.v here

 Simulation Output

 TIME = 0 RESET = 0 CLOCK = 0
 TIME = 1 RESET = 0 CLOCK = 1
 TIME = 2 RESET = 1 CLOCK = 0
 TIME = 3 RESET = 1 CLOCK = 1
 TIME = 4 RESET = 1 CLOCK = 0
 TIME = 5 RESET = 1 CLOCK = 1
 TIME = 6 RESET = 1 CLOCK = 0
 TIME = 7 RESET = 0 CLOCK = 1
 TIME = 8 RESET = 0 CLOCK = 0
 TIME = 9 RESET = 0 CLOCK = 1
 TIME = 10 RESET = 0 CLOCK = 0
 TIME = 11 RESET = 0 CLOCK = 1
 TIME = 12 RESET = 0 CLOCK = 0
 TIME = 13 RESET = 0 CLOCK = 1
 TIME = 14 RESET = 0 CLOCK = 0
 TIME = 15 RESET = 0 CLOCK = 1
 TIME = 16 RESET = 0 CLOCK = 0

Waveform

Edge sensitive Event Controls

 Delays execution of the next statement until the specified transition
on a signal.

 syntax : @ (< posedge >|< negedge > signal) < statement >;

http://www.asic-world.com/code/verilog_tutorial/clk_gen.v

 Verilog Programming Guide

145

Example - Edge Wait

 1 module edge_wait_example();
 2

 3 reg enable, clk, trigger;
 4

 5 always @ (posedge enable)

 6 begin

 7 trigger = 0;

 8 // Wait for 5 clock cycles

 9 repeat (5) begin

 10 @ (posedge clk) ;

 11 end

 12 trigger = 1;

 13 end
 14

 15 //Testbench code here

 16 initial begin

 17 $monitor ("TIME : %g CLK : %b ENABLE : %b TRIGGER : %b",

 18 $time, clk,enable,trigger);

 19 clk = 0;

 20 enable = 0;

 21 #5 enable = 1;

 22 #1 enable = 0;

 23 #10 enable = 1;

 24 #1 enable = 0;

 25 #10 $finish;

 26 end
 27

 28 always

 29 #1 clk = ~clk;
 30

 31 endmodule

You could download file edge_wait_example.v here

 Simulator Output

 TIME : 0 CLK : 0 ENABLE : 0 TRIGGER : x
 TIME : 1 CLK : 1 ENABLE : 0 TRIGGER : x
 TIME : 2 CLK : 0 ENABLE : 0 TRIGGER : x
 TIME : 3 CLK : 1 ENABLE : 0 TRIGGER : x
 TIME : 4 CLK : 0 ENABLE : 0 TRIGGER : x
 TIME : 5 CLK : 1 ENABLE : 1 TRIGGER : 0
 TIME : 6 CLK : 0 ENABLE : 0 TRIGGER : 0
 TIME : 7 CLK : 1 ENABLE : 0 TRIGGER : 0
 TIME : 8 CLK : 0 ENABLE : 0 TRIGGER : 0

http://www.asic-world.com/code/verilog_tutorial/edge_wait_example.v

 Verilog Programming Guide

146

 TIME : 9 CLK : 1 ENABLE : 0 TRIGGER : 0
 TIME : 10 CLK : 0 ENABLE : 0 TRIGGER : 0
 TIME : 11 CLK : 1 ENABLE : 0 TRIGGER : 0
 TIME : 12 CLK : 0 ENABLE : 0 TRIGGER : 0
 TIME : 13 CLK : 1 ENABLE : 0 TRIGGER : 0
 TIME : 14 CLK : 0 ENABLE : 0 TRIGGER : 0
 TIME : 15 CLK : 1 ENABLE : 0 TRIGGER : 1
 TIME : 16 CLK : 0 ENABLE : 1 TRIGGER : 0
 TIME : 17 CLK : 1 ENABLE : 0 TRIGGER : 0
 TIME : 18 CLK : 0 ENABLE : 0 TRIGGER : 0
 TIME : 19 CLK : 1 ENABLE : 0 TRIGGER : 0
 TIME : 20 CLK : 0 ENABLE : 0 TRIGGER : 0
 TIME : 21 CLK : 1 ENABLE : 0 TRIGGER : 0
 TIME : 22 CLK : 0 ENABLE : 0 TRIGGER : 0
 TIME : 23 CLK : 1 ENABLE : 0 TRIGGER : 0
 TIME : 24 CLK : 0 ENABLE : 0 TRIGGER : 0
 TIME : 25 CLK : 1 ENABLE : 0 TRIGGER : 1
 TIME : 26 CLK : 0 ENABLE : 0 TRIGGER : 1

Level-Sensitive Even Controls (Wait statements)

 Delays execution of the next statement until < expression > evaluates
to true

 syntax : wait (< expression >) < statement >;

Example - Level Wait

 1 module wait_example();
 2

 3 reg mem_read, data_ready;

 4 reg [7:0] data_bus, data;
 5

 6 always @ (mem_read or data_bus or data_ready)

 7 begin

 8 data = 0;

 9 while (mem_read == 1'b1) begin

 10 // #1 is very important to avoid infinite loop

 11 wait (data_ready == 1) #1 data = data_bus;

 12 end

 13 end
 14

 15 // Testbench Code here

 16 initial begin

 17 $monitor ("TIME = %g READ = %b READY = %b DATA = %b",

 18 $time, mem_read, data_ready, data);

 19 data_bus = 0;

 Verilog Programming Guide

147

 20 mem_read = 0;

 21 data_ready = 0;

 22 #10 data_bus = 8'hDE;

 23 #10 mem_read = 1;

 24 #20 data_ready = 1;

 25 #1 mem_read = 1;

 26 #1 data_ready = 0;

 27 #10 data_bus = 8'hAD;

 28 #10 mem_read = 1;

 29 #20 data_ready = 1;

 30 #1 mem_read = 1;

 31 #1 data_ready = 0;

 32 #10 $finish;

 33 end
 34

 35 endmodule

You could download file wait_example.v here

 Simulator Output

 TIME = 0 READ = 0 READY = 0 DATA = 00000000
 TIME = 20 READ = 1 READY = 0 DATA = 00000000
 TIME = 40 READ = 1 READY = 1 DATA = 00000000
 TIME = 41 READ = 1 READY = 1 DATA = 11011110
 TIME = 42 READ = 1 READY = 0 DATA = 11011110
 TIME = 82 READ = 1 READY = 1 DATA = 11011110
 TIME = 83 READ = 1 READY = 1 DATA = 10101101
 TIME = 84 READ = 1 READY = 0 DATA = 10101101

Intra-Assignment Timing Controls

 Intra-assignment controls always evaluate the right side expression
immediately and assign the result after the delay or event control.

In non-intra-assignment controls (delay or event control on the left
side), the right side expression is evaluated after the delay or event
control.

Example - Intra-Assignment

 1 module intra_assign();
 2

 3 reg a, b;
 4

 5 initial begin

 6 $monitor("TIME = %g A = %b B = %b",$time, a , b);

http://www.asic-world.com/code/verilog_tutorial/wait_example.v

 Verilog Programming Guide

148

 7 a = 1;

 8 b = 0;

 9 a = #10 0;

 10 b = a;

 11 #20 $display("TIME = %g A = %b B = %b",$time, a , b);

 12 $finish;

 13 end
 14

 15 endmodule

You could download file intra_assign.v here

 Simulation Output

 TIME = 0 A = 1 B = 0
 TIME = 10 A = 0 B = 0
 TIME = 30 A = 0 B = 0

Waveform

Modeling Combo Logic with Continuous Assignments

Whenever any signal changes on the right hand side, the entire right-
hand side is re-evaluated and the result is assigned to the left hand
side.

Example - Tri-state Buffer

 1 module tri_buf_using_assign();

 2 reg data_in, enable;

 3 wire pad;
 4

 5 assign pad = (enable) ? data_in : 1'bz;
 6

 7 initial begin

 8 $monitor ("TIME = %g ENABLE = %b DATA : %b PAD %b",

 9 $time, enable, data_in, pad);

 10 #1 enable = 0;

http://www.asic-world.com/code/verilog_tutorial/intra_assign.v

 Verilog Programming Guide

149

 11 #1 data_in = 1;

 12 #1 enable = 1;

 13 #1 data_in = 0;

 14 #1 enable = 0;

 15 #1 $finish;

 16 end
 17

 18 endmodule

You could download file tri_buf_using_assign.v here

 Simulation Output

 TIME = 0 ENABLE = x DATA : x PAD x
 TIME = 1 ENABLE = 0 DATA : x PAD z
 TIME = 2 ENABLE = 0 DATA : 1 PAD z
 TIME = 3 ENABLE = 1 DATA : 1 PAD 1
 TIME = 4 ENABLE = 1 DATA : 0 PAD 0
 TIME = 5 ENABLE = 0 DATA : 0 PAD z

Waveform

Example - Mux

 1 module mux_using_assign();

 2 reg data_in_0, data_in_1;

 3 wire data_out;

 4 reg sel;
 5

 6 assign data_out = (sel) ? data_in_1 : data_in_0;
 7

 8 // Testbench code here

 9 initial begin

 10 $monitor("TIME = %g SEL = %b DATA0 = %b DATA1 = %b OUT =

%b",

 11 $time,sel,data_in_0,data_in_1,data_out);

 12 data_in_0 = 0;

 13 data_in_1 = 0;

http://www.asic-world.com/code/verilog_tutorial/tri_buf_using_assign.v

 Verilog Programming Guide

150

 14 sel = 0;

 15 #10 sel = 1;

 16 #10 $finish;

 17 end
 18

 19 // Toggel data_in_0 at #1

 20 always

 21 #1 data_in_0 = ~data_in_0;
 22

 23 // Toggel data_in_1 at #2

 24 always

 25 #2 data_in_1 = ~data_in_1;
 26

 27 endmodule

You could download file mux_using_assign.v here

 Simulation Output

 TIME = 0 SEL = 0 DATA0 = 0 DATA1 = 0 OUT = 0
 TIME = 1 SEL = 0 DATA0 = 1 DATA1 = 0 OUT = 1
 TIME = 2 SEL = 0 DATA0 = 0 DATA1 = 1 OUT = 0
 TIME = 3 SEL = 0 DATA0 = 1 DATA1 = 1 OUT = 1
 TIME = 4 SEL = 0 DATA0 = 0 DATA1 = 0 OUT = 0
 TIME = 5 SEL = 0 DATA0 = 1 DATA1 = 0 OUT = 1
 TIME = 6 SEL = 0 DATA0 = 0 DATA1 = 1 OUT = 0
 TIME = 7 SEL = 0 DATA0 = 1 DATA1 = 1 OUT = 1
 TIME = 8 SEL = 0 DATA0 = 0 DATA1 = 0 OUT = 0
 TIME = 9 SEL = 0 DATA0 = 1 DATA1 = 0 OUT = 1
 TIME = 10 SEL = 1 DATA0 = 0 DATA1 = 1 OUT = 1
 TIME = 11 SEL = 1 DATA0 = 1 DATA1 = 1 OUT = 1
 TIME = 12 SEL = 1 DATA0 = 0 DATA1 = 0 OUT = 0
 TIME = 13 SEL = 1 DATA0 = 1 DATA1 = 0 OUT = 0
 TIME = 14 SEL = 1 DATA0 = 0 DATA1 = 1 OUT = 1
 TIME = 15 SEL = 1 DATA0 = 1 DATA1 = 1 OUT = 1
 TIME = 16 SEL = 1 DATA0 = 0 DATA1 = 0 OUT = 0
 TIME = 17 SEL = 1 DATA0 = 1 DATA1 = 0 OUT = 0
 TIME = 18 SEL = 1 DATA0 = 0 DATA1 = 1 OUT = 1
 TIME = 19 SEL = 1 DATA0 = 1 DATA1 = 1 OUT = 1

Waveform

http://www.asic-world.com/code/verilog_tutorial/mux_using_assign.v

 Verilog Programming Guide

151

Task

Tasks are used in all programming languages, generally known as
procedures or subroutines. The lines of code are enclosed in
task....end task brackets. Data is passed to the task, the processing
done, and the result returned. They have to be specifically called,
with data ins and outs, rather than just wired in to the general netlist.
Included in the main body of code, they can be called many times,
reducing code repetition.

• tasks are defined in the module in which they are used. It is
possible to define a task in a separate file and use the
compile directive 'include to include the task in the file which
instantiates the task.

• tasks can include timing delays, like posedge, negedge, #
delay and wait.

• tasks can have any number of inputs and outputs.
• The variables declared within the task are local to that task.

The order of declaration within the task defines how the
variables passed to the task by the caller are used.

• tasks can take, drive and source global variables, when no
local variables are used. When local variables are used,
basically output is assigned only at the end of task execution.

• tasks can call another task or function.
• tasks can be used for modeling both combinational and

sequential logic.
• A task must be specifically called with a statement, it cannot

be used within an expression as a function can.

Syntax

 • A task begins with keyword task and ends with keyword
endtask

 Verilog Programming Guide

152

• Inputs and outputs are declared after the keyword task.
• Local variables are declared after input and output

declaration.

Example - Simple Task

 1 module simple_task();
 2

 3 task convert;

 4 input [7:0] temp_in;

 5 output [7:0] temp_out;

 6 begin

 7 temp_out = (9/5) *(temp_in + 32)

 8 end

 9 endtask
 10

 11 endmodule

You could download file simple_task.v here

Example - Task using Global Variables

 1 module task_global();
 2

 3 reg [7:0] temp_out;

 4 reg [7:0] temp_in;
 5

 6 task convert;

 7 begin

 8 temp_out = (9/5) *(temp_in + 32);

 9 end

 10 endtask
 11

 12 endmodule

You could download file task_global.v here

Calling a Task

Let's assume that the task in example 1 is stored in a file called
mytask.v. Advantage of coding a task in a separate file, is that it can
be used in multiple modules.

 1 module task_calling (temp_a, temp_b, temp_c, temp_d);

http://www.asic-world.com/code/verilog_tutorial/simple_task.v
http://www.asic-world.com/code/verilog_tutorial/task_global.v

 Verilog Programming Guide

153

 2 input [7:0] temp_a, temp_c;

 3 output [7:0] temp_b, temp_d;

 4 reg [7:0] temp_b, temp_d;

 5 `include "mytask.v"
 6

 7 always @ (temp_a)

 8 begin

 9 convert (temp_a, temp_b);

 10 end
 11

 12 always @ (temp_c)

 13 begin

 14 convert (temp_c, temp_d);

 15 end
 16

 17 endmodule

You could download file task_calling.v here

Example - CPU Write / Read Task

Below is the waveform used for writing into memory and reading from
memory. We make the assumption that there is a need to use this
interface from multiple agents. So we write the read/write as tasks.

 1 module bus_wr_rd_task();
 2

 3 reg clk,rd,wr,ce;

 4 reg [7:0] addr,data_wr,data_rd;

 5 reg [7:0] read_data;
 6

 7 initial begin

 8 clk = 0;

 9 read_data = 0;

 10 rd = 0;

 11 wr = 0;

 12 ce = 0;

http://www.asic-world.com/code/verilog_tutorial/task_calling.v

 Verilog Programming Guide

154

 13 addr = 0;

 14 data_wr = 0;

 15 data_rd = 0;

 16 // Call the write and read tasks here

 17 #1 cpu_write(8'h11,8'hAA);

 18 #1 cpu_read(8'h11,read_data);

 19 #1 cpu_write(8'h12,8'hAB);

 20 #1 cpu_read(8'h12,read_data);

 21 #1 cpu_write(8'h13,8'h0A);

 22 #1 cpu_read(8'h13,read_data);

 23 #100 $finish;

 24 end

 25 // Clock Generator

 26 always

 27 #1 clk = ~clk;

 28 // CPU Read Task

 29 task cpu_read;

 30 input [7:0] address;

 31 output [7:0] data;

 32 begin

 33 $display ("%g CPU Read task with address : %h", $time,
address);

 34 $display ("%g -> Driving CE, RD and ADDRESS on to bus",

$time);

 35 @ (posedge clk);

 36 addr = address;

 37 ce = 1;

 38 rd = 1;

 39 @ (negedge clk);

 40 data = data_rd;

 41 @ (posedge clk);

 42 addr = 0;

 43 ce = 0;

 44 rd = 0;

 45 $display ("%g CPU Read data : %h", $time, data);

 46 $display ("======================");

 47 end

 48 endtask

 49 // CU Write Task

 50 task cpu_write;

 51 input [7:0] address;

 52 input [7:0] data;

 53 begin

 54 $display ("%g CPU Write task with address : %h Data : %h",

 55 $time, address,data);

 56 $display ("%g -> Driving CE, WR, WR data and ADDRESS on to

bus",

 57 $time);

 Verilog Programming Guide

155

 58 @ (posedge clk);

 59 addr = address;

 60 ce = 1;

 61 wr = 1;

 62 data_wr = data;

 63 @ (posedge clk);

 64 addr = 0;

 65 ce = 0;

 66 wr = 0;

 67 $display ("======================");

 68 end

 69 endtask
 70

 71 // Memory model for checking tasks

 72 reg [7:0] mem [0:255];
 73

 74 always @ (addr or ce or rd or wr or data_wr)

 75 if (ce) begin

 76 if (wr) begin

 77 mem[addr] = data_wr;

 78 end

 79 if (rd) begin

 80 data_rd = mem[addr];

 81 end

 82 end
 83

 84 endmodule

You could download file bus_wr_rd_task.v here

 Simulation Output

 1 CPU Write task with address : 11 Data : aa
 1 -> Driving CE, WR, WR data and ADDRESS on to bus
 ======================
 4 CPU Read task with address : 11
 4 -> Driving CE, RD and ADDRESS on to bus
 7 CPU Read data : aa
 ======================
 8 CPU Write task with address : 12 Data : ab
 8 -> Driving CE, WR, WR data and ADDRESS on to bus
 ======================
 12 CPU Read task with address : 12
 12 -> Driving CE, RD and ADDRESS on to bus
 15 CPU Read data : ab
 ======================
 16 CPU Write task with address : 13 Data : 0a
 16 -> Driving CE, WR, WR data and ADDRESS on to bus
 ======================
 20 CPU Read task with address : 13

http://www.asic-world.com/code/verilog_tutorial/bus_wr_rd_task.v

 Verilog Programming Guide

156

 20 -> Driving CE, RD and ADDRESS on to bus
 23 CPU Read data : 0a
 ======================

Function

A Verilog HDL function is the same as a task, with very little
differences, like function cannot drive more than one output, can not
contain delays.

• functions are defined in the module in which they are used. It
is possible to define functions in separate files and use
compile directive 'include to include the function in the file
which instantiates the task.

• functions can not include timing delays, like posedge,
negedge, # delay, which means that functions should be
executed in "zero" time delay.

• functions can have any number of inputs but only one output.
• The variables declared within the function are local to that

function. The order of declaration within the function defines
how the variables passed to the function by the caller are
used.

• functions can take, drive, and source global variables, when
no local variables are used. When local variables are used,
basically output is assigned only at the end of function
execution.

• functions can be used for modeling combinational logic.
• functions can call other functions, but can not call tasks.

Syntax

• A function begins with keyword function and ends with
keyword endfunction

• inputs are declared after the keyword function.

Example - Simple Function

 1 module simple_function();
 2

 3 function myfunction;

 4 input a, b, c, d;

 5 begin

 Verilog Programming Guide

157

 6 myfunction = ((a+b) + (c-d));

 7 end

 8 endfunction
 9

 10 endmodule

You could download file simple_function.v here

Example - Calling a Function

 1 module function_calling(a, b, c, d, e, f);
 2

 3 input a, b, c, d, e ;

 4 output f;

 5 wire f;

 6 `include "myfunction.v"
 7

 8 assign f = (myfunction (a,b,c,d)) ? e :0;
 9

 10 endmodule

You could download file function_calling.v here

Introduction

There are tasks and functions that are used to generate input and
output during simulation. Their names begin with a dollar sign ($).
The synthesis tools parse and ignore system functions, and hence
can be included even in synthesizable models.

$display, $strobe, $monitor

These commands have the same syntax, and display text on the
screen during simulation. They are much less convenient than
waveform display tools like GTKWave. or Undertow or Debussy.
$display and $strobe display once every time they are executed,
whereas $monitor displays every time one of its parameters
changes. The difference between $display and $strobe is that
$strobe displays the parameters at the very end of the current
simulation time unit rather than exactly when it is executed. The
format string is like that in C/C++, and may contain format characters.
Format characters include %d (decimal), %h (hexadecimal), %b
(binary), %c (character), %s (string) and %t (time), %m (hierarchy
level). %5d, %5b etc. would give exactly 5 spaces for the number

http://www.asic-world.com/code/verilog_tutorial/simple_function.v
http://www.asic-world.com/code/verilog_tutorial/function_calling.v

 Verilog Programming Guide

158

instead of the space needed. Append b, h, o to the task name to
change default format to binary, octal or hexadecimal.

Syntax

• $display ("format_string", par_1, par_2, ...);
• $strobe ("format_string", par_1, par_2, ...);
• $monitor ("format_string", par_1, par_2, ...);
• $displayb (as above but defaults to binary..);
• $strobeh (as above but defaults to hex..);
• $monitoro (as above but defaults to octal..);

$time, $stime, $realtime

 These return the current simulation time as a 64-bit integer, a 32-bit
integer, and a real number, respectively.

$reset, $stop, $finish

$reset resets the simulation back to time 0; $stop halts the simulator
and puts it in interactive mode where the user can enter commands;
$finish exits the simulator back to the operating system.

$scope, $showscope

$scope(hierarchy_name) sets the current hierarchical scope to
hierarchy_name. $showscopes(n) lists all modules, tasks and block
names in (and below, if n is set to 1) the current scope.

$random

$random generates a random integer every time it is called. If the
sequence is to be repeatable, the first time one invokes random
giving it a numerical argument (a seed). Otherwise the seed is
derived from the computer clock.

$dumpfile, $dumpvar, $dumpon, $dumpoff, $dumpall

These can dump variable changes to a simulation viewer like
Debussy. The dump files are capable of dumping all the variables in
a simulation. This is convenient for debugging, but can be very slow.

Syntax

 Verilog Programming Guide

159

• $dumpfile("filename.vcd")
• $dumpvar dumps all variables in the design.
• $dumpvar(1, top) dumps all the variables in module top and

below, but not modules instantiated in top.
• $dumpvar(2, top) dumps all the variables in module top and

1 level below.
• $dumpvar(n, top) dumps all the variables in module top and

n-1 levels below.
• $dumpvar(0, top) dumps all the variables in module top and

all level below.
• $dumpon initiates the dump.
• $dumpoff stop dumping.

$fopen, $fdisplay, $fstrobe $fmonitor and $fwrite
 These commands write more selectively to files.

• $fopen opens an output file and gives the open file a handle
for use by the other commands.

• $fclose closes the file and lets other programs access it.
• $fdisplay and $fwrite write formatted data to a file whenever

they are executed. They are the same except $fdisplay
inserts a new line after every execution and $write does not.

• $strobe also writes to a file when executed, but it waits until
all other operations in the time step are complete before
writing. Thus initial #1 a=1; b=0; $fstrobe(hand1, a,b); b=1;
will write write 1 1 for a and b.

• $monitor writes to a file whenever any of its arguments
changes.

Syntax

• handle1=$fopen("filenam1.suffix")
• handle2=$fopen("filenam2.suffix")
• $fstrobe(handle1, format, variable list) //strobe data into

filenam1.suffix
• $fdisplay(handle2, format, variable list) //write data into

filenam2.suffix

 Verilog Programming Guide

160

• $fwrite(handle2, format, variable list) //write data into
filenam2.suffix all on one line. Put in the format string where
a new line is desired.

Writing a testbench is as complex as writing the RTL code itself.
These days ASICs are getting more and more complex and thus
verifying these complex ASIC has become a challenge.
Typically 60-70% of time needed for any ASIC is spent on
verification/validation/testing. Even though the above facts are
well known to most ASIC engineers, still engineers think that
there is no glory in verification.

I have picked up some examples from the VLSI classes that I
used to teach during 1999-2001, when I was in Chennai. Please
feel free to give your feedback on how to improve the tutorial
below.

Before you Start

For writing testbenches it is important to have the design
specification of "design under test" or simply DUT. Specs need
to be understood clearly and a test plan, which basically
documents the test bench architecture and the test scenarios
(test cases) in detail, needs to be made.

Example - Counter

Let's assume that we have to verify a simple 4-bit up counter,
which increments its count whenever enable is high, and resets
to zero when reset is asserted high. Reset is synchronous to
clock.

Code for Counter

 1 //---

 2 // Design Name : counter

 3 // File Name : counter.v

 4 // Function : 4 bit up counter

 5 // Coder : Deepak

 6 //---

 7 module counter (clk, reset, enable, count);

 8 input clk, reset, enable;

 Verilog Programming Guide

161

 9 output [3:0] count;

 10 reg [3:0] count;
 11

 12 always @ (posedge clk)

 13 if (reset == 1'b1) begin

 14 count <= 0;

 15 end else if (enable == 1'b1) begin

 16 count <= count + 1;

 17 end
 18

 19 endmodule

You could download file counter.v here

Test Plan

We will write a self-checking test bench, but we will do this in
steps to help you understand the concept of writing automated
test benches. Our testbench environment will look something
like the figure below.

DUT is instantiated in the testbench, and the testbench will
contain a clock generator, reset generator, enable logic
generator and compare logic, which basically calculates the
expected count value of counter and compares it with the output
of counter.

Test Cases

• Reset Test : We can start with reset de-asserted,
followed by asserting reset for few clock ticks and
deasserting the reset, See if counter sets its output to
zero.

http://www.asic-world.com/code/verilog_tutorial/counter.v

 Verilog Programming Guide

162

• Enable Test : Assert/deassert enable after reset is
applied.

• Random Assert/deassert of enable and reset.

 We can add some more test cases; but we are not here to test
the counter, rather to learn how to write test benches.

Writing a
TestBench

First step of any testbench creation is building a dummy template
which basically declares inputs to DUT as reg and outputs from DUT
as wire, then instantiates the DUT as shown in the code below. Note
that there is no port list for the test bench.

Test Bench

 1 module counter_tb;

 2 reg clk, reset, enable;

 3 wire [3:0] count;
 4

 5 counter U0 (

 6 .clk (clk),

 7 .reset (reset),

 8 .enable (enable),

 9 .count (count)

 10);

 11

 12 endmodule

You could download file counter_tb1.v here

Next step would be to add clock generator logic: this is straight
forward, as we know how to generate a clock. Before we add a clock
generator we need to drive all the inputs to DUT to some known state
as shown in the code below.

Test Bench with Clock generator

 1 module counter_tb;

 2 reg clk, reset, enable;

http://www.asic-world.com/code/verilog_tutorial/counter_tb1.v

 Verilog Programming Guide

163

 3 wire [3:0] count;
 4

 5 counter U0 (

 6 .clk (clk),

 7 .reset (reset),

 8 .enable (enable),

 9 .count (count)

 10);

 11

 12 initial

 13 begin

 14 clk = 0;

 15 reset = 0;

 16 enable = 0;

 17 end
 18

 19 always

 20 #5 clk = ! clk;
 21

 22 endmodule

You could download file counter_tb2.v here

An initial block in Verilog is executed only once, thus simulator sets
the value of clk, reset and enable to 0; by looking at the counter code
(of course you will be referring to the DUT specs) could be found that
driving 0 makes all these signals disabled.

There are many ways to generate a clock: one could use a forever
loop inside an initial block as an alternative to the above code. You
could a add parameter or use `define to control the clock frequency.
You may write a complex clock generator, where we could introduce
PPM (Parts per million, clock width drift), then control the duty cycle.
All the above depends on the specs of the DUT and the creativity of
a "Test Bench Designer".

At this point, you would like to test if the testbench is generating the
clock correctly: well you can compile it with any Verilog simulator.
You need to give command line options as shown below.

 C:\www.asic-world.com\veridos counter.v counter_tb.v

Of course it is a very good idea to keep file names the same as the
module name. Ok, coming back to compiling, you will see that the
simulator does print anything on screen, or dump any waveform.
Thus we need to add support for all the above as shown in the code
below.

http://www.asic-world.com/code/verilog_tutorial/counter_tb2.v

 Verilog Programming Guide

164

Test Bench continues...

 1 module counter_tb;

 2 reg clk, reset, enable;

 3 wire [3:0] count;
 4

 5 counter U0 (

 6 .clk (clk),

 7 .reset (reset),

 8 .enable (enable),

 9 .count (count)

 10);

 11

 12 initial begin

 13 clk = 0;

 14 reset = 0;

 15 enable = 0;

 16 end
 17

 18 always

 19 #5 clk = ! clk;
 20

 21 initial begin

 22 $dumpfile ("counter.vcd");

 23 $dumpvars;

 24 end
 25

 26 initial begin

 27 $display("\t\ttime,\tclk,\treset,\tenable,\tcount");

 28 $monitor("%d,\t%b,\t%b,\t%b,\t%d",$time,
clk,reset,enable,count);

 29 end
 30

 31 initial

 32 #100 $finish;
 33

 34 //Rest of testbench code after this line
 35

 36 endmodule

You could download file counter_tb3.v here

$dumpfile is used for specifying the file that the simulator will use to
store the waveform, that can be used later using a waveform viewer.
(Please refer to the tools section for freeware versions of viewers.)
$dumpvars basically instructs the Verilog compiler to start dumping
all the signals to "counter.vcd".

http://www.asic-world.com/code/verilog_tutorial/counter_tb3.v

 Verilog Programming Guide

165

$display is used for printing text or variables to stdout (screen), \t is
for inserting tabs. The syntax is the same as for printf C language.
$monitor in the second line is a bit different: $monitor keeps track of
changes to the variables that are in the list (clk, reset, enable, count).
Whenever any of them changes, it prints their value, in the respective
radix specified.

 $finish is used for terminating the simulation after #100 time units
(note: all the initial, always blocks start execution at time 0).

 Now that we have written the basic skeleton, let's compile and see
what we have just coded. Output of the simulator is shown below.

 C:\www.asic-world.com>veridos counter.v counter_tb.v
 VeriWell for Win32 HDL Version 2.1.4 Fri Jan 17 21:33:25 2003

 This is a free version of the VeriWell for Win32 Simulator
 Distribute this freely; call 1-800-VERIWELL for ordering information
 See the file "!readme.1st" for more information

 Copyright (c) 1993-97 Wellspring Solutions, Inc.
 All rights reserved

 Memory Available: 0
 Entering Phase I...
 Compiling source file : counter.v
 Compiling source file : counter_tb.v
 The size of this model is [2%, 5%] of the capacity of the free version

 Entering Phase II...
 Entering Phase III...
 No errors in compilation
 Top-level modules:
 counter_tb

 time clk, reset, enable, count
 0, 0, 0, 0, x
 5, 1, 0, 0, x
 10, 0, 0, 0, x
 15, 1, 0, 0, x
 20, 0, 0, 0, x
 25, 1, 0, 0, x
 30, 0, 0, 0, x
 35, 1, 0, 0, x
 40, 0, 0, 0, x
 45, 1, 0, 0, x
 50, 0, 0, 0, x

 Verilog Programming Guide

166

 55, 1, 0, 0, x
 60, 0, 0, 0, x
 65, 1, 0, 0, x
 70, 0, 0, 0, x
 75, 1, 0, 0, x
 80, 0, 0, 0, x
 85, 1, 0, 0, x
 90, 0, 0, 0, x
 95, 1, 0, 0, x

 Exiting VeriWell for Win32 at time 100
 0 Errors, 0 Warnings, Memory Used: 0
 Compile time = 0.0 Load time = 0.0 Simulation time = 0.1

 Normal exit
 Thank you for using VeriWell for Win32

Adding Reset
Logic

Once we have the basic logic to allow us to see what our testbench is
doing, we can next add the reset logic. If we look at the testcases, we
see that we had added a constraint that it should be possible to
activate reset anytime during simulation. To achieve this we have
many approaches, but I am going to teach something that will go long
way. There is something called 'events' in Verilog: events can be
triggered, and also monitored, to see if an event has occurred.

Let's code our reset logic in such a way that it waits for the trigger
event "reset_trigger": when this event happens, reset logic asserts
reset at negative edge of clock and de-asserts on next negative edge
as shown in the code below. Also after de-asserting the reset, reset
logic triggers another event called "reset_done_trigger". This trigger
event can then be used somewhere else in the testbench to sync up.

Code of reset logic

 1 event reset_trigger;

 2 event reset_done_trigger;
 3

 4 initial begin

 5 forever begin

 6 @ (reset_trigger);

 7 @ (negedge clk);

 8 reset = 1;

 Verilog Programming Guide

167

 9 @ (negedge clk);

 10 reset = 0;

 11 -> reset_done_trigger;

 12 end

 13 end

You could download file counter_tb4.v here

Adding test case logic

Moving forward, let's add logic to generate the test cases, ok we have
three testcases as in the first part of this tutorial. Let's list them

again.

• Reset Test : We can start with reset de-asserted, followed by
asserting reset for few clock ticks and de-asserting the reset,
See if counter sets its output to zero.

• Enable Test : Assert/de-assert enable after reset is applied.
• Random Assert/de-assert of enable and reset.

Repeating it again: "There are many ways" to code a test case, it all
depends on the creativity of the Test bench designer. Let's take a
simple approach and then slowly build upon it.

Test Case 1 - Asserting/ De-asserting reset

 In this test case, we will just trigger the event reset_trigger after 10
simulation units.

 1 initial

 2 begin: TEST_CASE

 3 #10 -> reset_trigger;

 4 end

You could download file counter_tb5.v here

Test Case 2 - Assert/ De-assert enable after reset is applied.

In this test case, we will trigger the reset logic and wait for the reset
logic to complete its operation, before we start driving the enable
signal to logic 1.

 1 initial

 2 begin: TEST_CASE

 3 #10 -> reset_trigger;

http://www.asic-world.com/code/verilog_tutorial/counter_tb4.v
http://www.asic-world.com/code/verilog_tutorial/counter_tb5.v

 Verilog Programming Guide

168

 4 @ (reset_done_trigger);

 5 @ (negedge clk);

 6 enable = 1;

 7 repeat (10) begin

 8 @ (negedge clk);

 9 end

 10 enable = 0;

 11 end

You could download file counter_tb6.v here

Test Case 3 - Assert/De-assert enable and reset randomly.

 In this testcase we assert the reset, and then randomly drive values
on to enable and reset signal.

 1 initial

 2 begin : TEST_CASE

 3 #10 -> reset_trigger;

 4 @ (reset_done_trigger);

 5 fork

 6 repeat (10) begin

 7 @ (negedge clk);

 8 enable = $random;

 9 end

 10 repeat (10) begin

 11 @ (negedge clk);

 12 reset = $random;

 13 end

 14 join

 15 end

You could download file counter_tb7.v here

Well you might ask, do all this three test case exist in same file? Well,
the answer is no. If we try to have all three test cases on one file, then
we end up having race conditions due to three initial blocks driving
reset and enable signal. So normally, once test bench coding is done,
test cases are coded separately and included in testbench with
`include directives as shown below. (There are better ways to do this,
but you have to think how you want to do it).

If you look closely at all the three test cases, you will find that even
though test case execution is not complete, simulation terminates. To
have better control, what we can do is adding an event like
"terminate_sim" and execute $finish only when this event is triggered.
We can trigger this event at the end of test case execution. The code
for $finish now could look as shown below.

http://www.asic-world.com/code/verilog_tutorial/counter_tb6.v
http://www.asic-world.com/code/verilog_tutorial/counter_tb7.v

 Verilog Programming Guide

169

 1 event terminate_sim;

 2 initial begin

 3 @ (terminate_sim);

 4 #5 $finish;

 5 end

You could download file counter_tb8.v here

 The modified test case #2 would be like:

 1 initial

 2 begin: TEST_CASE

 3 #10 -> reset_trigger;

 4 @ (reset_done_trigger);

 5 @ (negedge clk);

 6 enable = 1;

 7 repeat (10) begin

 8 @ (negedge clk);

 9 end

 10 enable = 0;

 11 #5 -> terminate_sim;

 12 end
 13

You could download file counter_tb9.v here

Second problem with the approach that we have taken till now is that
we need to manually check the waveform and also the simulator
output on the screen to see if the DUT is working correctly. Part IV
shows how to automate this.

Adding
compare Logic

To make any testbench self checking/automated, first we need to
develop a model that mimics the DUT in functionality. In our example,
it's going to be very easy, but at times if the DUT is complex, then to
mimic it will be very complex and will require a lot of innovative
techniques to make self-checking work.

 1 reg [3:0] count_compare;
 2

 3 always @ (posedge clk)

 4 if (reset == 1'b1) begin

http://www.asic-world.com/code/verilog_tutorial/counter_tb8.v
http://www.asic-world.com/code/verilog_tutorial/counter_tb9.v

 Verilog Programming Guide

170

 5 count_compare <= 0;

 6 end else if (enable == 1'b1) begin

 7 count_compare <= count_compare + 1;

 8 end

You could download file counter_tb10.v here

Once we have the logic to mimic the DUT functionality, we need to
add the checker logic, which at any given point keeps checking the
expected value with the actual value. Whenever there is any error, it
prints out the expected and actual value, and also terminates the
simulation by triggering the event "terminate_sim".

 1 always @ (posedge clk)

 2 if (count_compare ! = count) begin

 3 $display ("DUT Error at time %d", $time);

 4 $display (" Expected value %d, Got Value %d", count_compare,
count);

 5 #5 -> terminate_sim;

 6 end

You could download file counter_tb11.v here

Now that we have the all the logic in place, we can remove $display
and $monitor, as our testbench have become fully automatic, and we
don't require to manually verify the DUT input and output. Try
changing the count_compare = count_compare +2, and see how
compare logic works. This is just another way to see if our testbench
is stable.

 We could add some fancy printing as shown in the figure below to
make our test environment more friendly.

 C:\Download\work>veridos counter.v counter_tb.v
 VeriWell for Win32 HDL Sat Jan 18 20:10:35 2003

 This is a free version of the VeriWell for Win32 Simulator
 Distribute this freely; call 1-800-VERIWELL for ordering information
 See the file "!readme.1st" for more information

 Copyright (c) 1993-97 Wellspring Solutions, Inc.
 All rights reserved

 Memory Available: 0
 Entering Phase I...
 Compiling source file : counter.v
 Compiling source file : counter_tb.v

http://www.asic-world.com/code/verilog_tutorial/counter_tb10.v
http://www.asic-world.com/code/verilog_tutorial/counter_tb11.v

 Verilog Programming Guide

171

 The size of this model is [5%, 6%] of the capacity of the free version

 Entering Phase II...
 Entering Phase III...
 No errors in compilation
 Top-level modules:
 counter_tb

 ##
 Applying reset
 Came out of Reset
 Terminating simulation
 Simulation Result : PASSED
 ###
 Exiting VeriWell for Win32 at time 96
 0 Errors, 0 Warnings, Memory Used: 0
 Compile time = 0.0, Load time = 0.0, Simulation time = 0.0

 Normal exit
 Thank you for using VeriWell for Win32

I know, you would like to see the test bench code that I used to
generate the above output, well you can find it here and counter
code here.

 There are a lot of things that I have not covered; maybe when I find
time, I may add some more details on this subject.

 As to books, I am yet to find a good book on writing test benches.

Memory
Modeling

To help modeling of memory, Verilog provides support for two
dimensions arrays. Behavioral models of memories are modeled by
declaring an array of register variables; any word in the array may be
accessed using an index into the array. A temporary variable is
required to access a discrete bit within the array.

Syntax
 reg [wordsize:0] array_name [0:arraysize]

Examples

Declaration

http://www.asic-world.com/code/verilog_tutorial/counter_tb.v
http://www.asic-world.com/code/verilog_tutorial/counter.v

 Verilog Programming Guide

172

 reg [7:0] my_memory [0:255];

 Here [7:0] is the memory width and [0:255] is the memory depth with
the following parameters:

• Width : 8 bits, little endian
• Depth : 256, address 0 corresponds to location 0 in the array.

Storing Values
 my_memory[address] = data_in;

Reading Values
 data_out = my_memory[address];

Bit Read

Sometimes there may be need to read just one bit. Unfortunately
Verilog does not allow to read or write only one bit: the workaround for
such a problem is as shown below.

 data_out = my_memory[address];

 data_out_it_0 = data_out[0];

Initializing Memories

A memory array may be initialized by reading memory pattern file from
disk and storing it on the memory array. To do this, we use system
tasks $readmemb and $readmemh. $readmemb is used for binary
representation of memory content and $readmemh for hex
representation.

Syntax
 $readmemh("file_name",mem_array,start_addr,stop_addr);
 Note : start_addr and stop_addr are optional.

Example - Simple memory

 1 module memory();

 2 reg [7:0] my_memory [0:255];
 3

 4 initial begin

 5 $readmemh("memory.list", my_memory);

 Verilog Programming Guide

173

 6 end

 7 endmodule

You could download file memory.v here

Example - Memory.list file

 1 //Comments are allowed

 2 1100_1100 // This is first address i.e 8'h00

 3 1010_1010 // This is second address i.e 8'h01

 4 @ 55 // Jump to new address 8'h55

 5 0101_1010 // This is address 8'h55

 6 0110_1001 // This is address 8'h56

You could download file memory.list here

$readmemh system task can also be used for reading testbench
vectors. I will cover this in detail in the test bench section ... when I find
time.

 Refer to the examples section for more details on different types of
memories.

Introduction
to FSM

State machines or FSM are the heart of any digital design; of course
a counter is a simple form of FSM. When I was learning Verilog, I
used to wonder "How do I code FSM in Verilog" and "What is the best
way to code it". I will try to answer the first part of the question below
and second part of the question can be found in the tidbits section.

State machine Types

There are two types of state machines as classified by the types of
outputs generated from each. The first is the Moore State Machine
where the outputs are only a function of the present state, the second
is the Mealy State Machine where one or more of the outputs are a
function of the present state and one or more of the inputs.

Mealy Model

http://www.asic-world.com/code/verilog_tutorial/memory.v
http://www.asic-world.com/code/verilog_tutorial/memory.list

 Verilog Programming Guide

174

Moore Model

State machines can also be classified according to the state
encoding used. Encoding style is also a critical factor which decides
speed and gate complexity of the FSM. Binary, gray, one hot, one
cold, and almost one hot are the different types of encoding styles
used in coding FSM states.

Modeling State machines.

One thing that need to be kept in mind when coding FSM is that
combinational logic and sequence logic should be in two different
always blocks. In the above two figures, next state logic is always the
combinational logic. State Registers and Output logic are sequential
logic. It is very important that any asynchronous signal to the next
state logic be synchronized before being fed to the FSM. Always try
to keep FSM in a separate Verilog file.

 Using constants declaration like parameter or ̀ define to define states
of the FSM makes code more readable and easy to manage.

Example - Arbiter

 We will be using the arbiter FSM to study FSM coding styles in
Verilog.

 Verilog Programming Guide

175

Verilog Code
 FSM code should have three sections:

• Encoding style.
• Combinational part.
• Sequential part.

Encoding Style
 There are many encoding styles around, some of which are:

• Binary Encoding
• One Hot Encoding
• One Cold Encoding
• Almost One Hot Encoding
• Almost One Cold Encoding
• Gray Encoding

 Of all the above types we normally use one hot and binary encoding.

One Hot Encoding

 1 parameter [4:0] IDLE = 5'b0_0001;

 2 parameter [4:0] GNT0 = 5'b0_0010;

 3 parameter [4:0] GNT1 = 5'b0_0100;

 4 parameter [4:0] GNT2 = 5'b0_1000;

 5 parameter [4:0] GNT3 = 5'b1_0000;

 Verilog Programming Guide

176

You could download file fsm_one_hot_params.v here

Binary Encoding

 1 parameter [2:0] IDLE = 3'b000;

 2 parameter [2:0] GNT0 = 3'b001;

 3 parameter [2:0] GNT1 = 3'b010;

 4 parameter [2:0] GNT2 = 3'b011;

 5 parameter [2:0] GNT3 = 3'b100;

You could download file fsm_binary_params.v here

Gray Encoding

 1 parameter [2:0] IDLE = 3'b000;

 2 parameter [2:0] GNT0 = 3'b001;

 3 parameter [2:0] GNT1 = 3'b011;

 4 parameter [2:0] GNT2 = 3'b010;

 5 parameter [2:0] GNT3 = 3'b110;

You could download file fsm_gray_params.v here

Combination
al Section

This section can be modeled using functions, assign statements or
using always blocks with a case statement. For the time being let's
see the always block version

 1 always @ (state or req_0 or req_1 or req_2 or req_3)

 2 begin

 3 next_state = 0;

 4 case(state)

 5 IDLE : if (req_0 == 1'b1) begin

 6 next_state = GNT0;

 7 end else if (req_1 == 1'b1) begin
 8 next_state= GNT1;

 9 end else if (req_2 == 1'b1) begin
 10 next_state= GNT2;

 11 end else if (req_3 == 1'b1) begin
 12 next_state= GNT3;

 13 end else begin

 14 next_state = IDLE;

 15 end

 16 GNT0 : if (req_0 == 1'b0) begin

 17 next_state = IDLE;

http://www.asic-world.com/code/verilog_tutorial/fsm_one_hot_params.v
http://www.asic-world.com/code/verilog_tutorial/fsm_binary_params.v
http://www.asic-world.com/code/verilog_tutorial/fsm_gray_params.v

 Verilog Programming Guide

177

 18 end else begin

 19 next_state = GNT0;

 20 end

 21 GNT1 : if (req_1 == 1'b0) begin

 22 next_state = IDLE;

 23 end else begin

 24 next_state = GNT1;

 25 end

 26 GNT2 : if (req_2 == 1'b0) begin

 27 next_state = IDLE;

 28 end else begin

 29 next_state = GNT2;

 30 end

 31 GNT3 : if (req_3 == 1'b0) begin

 32 next_state = IDLE;

 33 end else begin

 34 next_state = GNT3;

 35 end

 36 default : next_state = IDLE;

 37 endcase

 38 end

You could download file fsm_combo.v here

Sequential Section

 This section has to be modeled using only edge sensitive logic such
as always block with posedge or negedge of clock.

 1 always @ (posedge clock)

 2 begin : OUTPUT_LOGIC

 3 if (reset == 1'b1) begin

 4 gnt_0 <= #1 1'b0;

 5 gnt_1 <= #1 1'b0;

 6 gnt_2 <= #1 1'b0;

 7 gnt_3 <= #1 1'b0;

 8 state <= #1 IDLE;

 9 end else begin

 10 state <= #1 next_state;

 11 case(state)

 12 IDLE : begin

 13 gnt_0 <= #1 1'b0;

 14 gnt_1 <= #1 1'b0;

 15 gnt_2 <= #1 1'b0;

 16 gnt_3 <= #1 1'b0;

 17 end

 18 GNT0 : begin

http://www.asic-world.com/code/verilog_tutorial/fsm_combo.v

 Verilog Programming Guide

178

 19 gnt_0 <= #1 1'b1;

 20 end

 21 GNT1 : begin

 22 gnt_1 <= #1 1'b1;

 23 end

 24 GNT2 : begin

 25 gnt_2 <= #1 1'b1;

 26 end

 27 GNT3 : begin

 28 gnt_3 <= #1 1'b1;

 29 end

 30 default : begin

 31 state <= #1 IDLE;

 32 end

 33 endcase

 34 end

 35 end

You could download file fsm_seq.v here

Full Code using binary encoding

 1 module fsm_full(

 2 clock , // Clock

 3 reset , // Active high reset

 4 req_0 , // Active high request from agent 0

 5 req_1 , // Active high request from agent 1

 6 req_2 , // Active high request from agent 2

 7 req_3 , // Active high request from agent 3

 8 gnt_0 , // Active high grant to agent 0

 9 gnt_1 , // Active high grant to agent 1

 10 gnt_2 , // Active high grant to agent 2

 11 gnt_3 // Active high grant to agent 3
 12);

 13 // Port declaration here

 14 input clock ; // Clock

 15 input reset ; // Active high reset

 16 input req_0 ; // Active high request from agent 0

 17 input req_1 ; // Active high request from agent 1

 18 input req_2 ; // Active high request from agent 2

 19 input req_3 ; // Active high request from agent 3

 20 output gnt_0 ; // Active high grant to agent 0

 21 output gnt_1 ; // Active high grant to agent 1

 22 output gnt_2 ; // Active high grant to agent 2

 23 output gnt_3 ; // Active high grant to agent
 24

 25 // Internal Variables

http://www.asic-world.com/code/verilog_tutorial/fsm_seq.v

 Verilog Programming Guide

179

 26 reg gnt_0 ; // Active high grant to agent 0

 27 reg gnt_1 ; // Active high grant to agent 1

 28 reg gnt_2 ; // Active high grant to agent 2

 29 reg gnt_3 ; // Active high grant to agent
 30

 31 parameter [2:0] IDLE = 3'b000;

 32 parameter [2:0] GNT0 = 3'b001;

 33 parameter [2:0] GNT1 = 3'b010;

 34 parameter [2:0] GNT2 = 3'b011;

 35 parameter [2:0] GNT3 = 3'b100;
 36

 37 reg [2:0] state, next_state;
 38

 39 always @ (state or req_0 or req_1 or req_2 or req_3)

 40 begin

 41 next_state = 0;

 42 case(state)

 43 IDLE : if (req_0 == 1'b1) begin

 44 next_state = GNT0;

 45 end else if (req_1 == 1'b1) begin
 46 next_state= GNT1;

 47 end else if (req_2 == 1'b1) begin
 48 next_state= GNT2;

 49 end else if (req_3 == 1'b1) begin
 50 next_state= GNT3;

 51 end else begin

 52 next_state = IDLE;

 53 end

 54 GNT0 : if (req_0 == 1'b0) begin

 55 next_state = IDLE;

 56 end else begin

 57 next_state = GNT0;

 58 end

 59 GNT1 : if (req_1 == 1'b0) begin

 60 next_state = IDLE;

 61 end else begin

 62 next_state = GNT1;

 63 end

 64 GNT2 : if (req_2 == 1'b0) begin

 65 next_state = IDLE;

 66 end else begin

 67 next_state = GNT2;

 68 end

 69 GNT3 : if (req_3 == 1'b0) begin

 70 next_state = IDLE;

 71 end else begin

 72 next_state = GNT3;

 73 end

 Verilog Programming Guide

180

 74 default : next_state = IDLE;

 75 endcase

 76 end
 77

 78 always @ (posedge clock)

 79 begin : OUTPUT_LOGIC

 80 if (reset) begin

 81 gnt_0 <= #1 1'b0;

 82 gnt_1 <= #1 1'b0;

 83 gnt_2 <= #1 1'b0;

 84 gnt_3 <= #1 1'b0;

 85 state <= #1 IDLE;

 86 end else begin

 87 state <= #1 next_state;

 88 case(state)

 89 IDLE : begin

 90 gnt_0 <= #1 1'b0;

 91 gnt_1 <= #1 1'b0;

 92 gnt_2 <= #1 1'b0;

 93 gnt_3 <= #1 1'b0;

 94 end

 95 GNT0 : begin

 96 gnt_0 <= #1 1'b1;

 97 end

 98 GNT1 : begin

 99 gnt_1 <= #1 1'b1;

 100 end

 101 GNT2 : begin

 102 gnt_2 <= #1 1'b1;

 103 end

 104 GNT3 : begin

 105 gnt_3 <= #1 1'b1;

 106 end

 107 default : begin

 108 state <= #1 IDLE;

 109 end

 110 endcase

 111 end

 112 end
 113

 114 endmodule

You could download file fsm_full.v here

 Testbench

 1 `include "fsm_full.v"
 2

 3 module fsm_full_tb();

http://www.asic-world.com/code/verilog_tutorial/fsm_full.v

 Verilog Programming Guide

181

 4 reg clock , reset ;

 5 reg req_0 , req_1 , req_2 , req_3;

 6 wire gnt_0 , gnt_1 , gnt_2 , gnt_3 ;
 7

 8 initial begin

 9 $display("Time\t R0 R1 R2 R3 G0 G1 G2 G3");

 10 $monitor("%g\t %b %b %b %b %b %b %b %b",

 11 $time, req_0, req_1, req_2, req_3, gnt_0, gnt_1,
gnt_2, gnt_3);

 12 clock = 0;

 13 reset = 0;

 14 req_0 = 0;

 15 req_1 = 0;

 16 req_2 = 0;

 17 req_3 = 0;

 18 #10 reset = 1;

 19 #10 reset = 0;

 20 #10 req_0 = 1;

 21 #20 req_0 = 0;

 22 #10 req_1 = 1;

 23 #20 req_1 = 0;

 24 #10 req_2 = 1;

 25 #20 req_2 = 0;

 26 #10 req_3 = 1;

 27 #20 req_3 = 0;

 28 #10 $finish;

 29 end
 30

 31 always

 32 #2 clock = ~clock;
 33

 34

 35 fsm_full U_fsm_full(

 36 clock , // Clock

 37 reset , // Active high reset

 38 req_0 , // Active high request from agent 0

 39 req_1 , // Active high request from agent 1

 40 req_2 , // Active high request from agent 2

 41 req_3 , // Active high request from agent 3

 42 gnt_0 , // Active high grant to agent 0

 43 gnt_1 , // Active high grant to agent 1

 44 gnt_2 , // Active high grant to agent 2

 45 gnt_3 // Active high grant to agent 3
 46);

 47

 48

 49

 50 endmodule

You could download file fsm_full_tb.v here

http://www.asic-world.com/code/verilog_tutorial/fsm_full_tb.v

 Verilog Programming Guide

182

 Simulator Output

 Time R0 R1 R2 R3 G0 G1 G2 G3
 0 0 0 0 0 x x x x
 7 0 0 0 0 0 0 0 0
 30 1 0 0 0 0 0 0 0
 35 1 0 0 0 1 0 0 0
 50 0 0 0 0 1 0 0 0
 55 0 0 0 0 0 0 0 0
 60 0 1 0 0 0 0 0 0
 67 0 1 0 0 0 1 0 0
 80 0 0 0 0 0 1 0 0
 87 0 0 0 0 0 0 0 0
 90 0 0 1 0 0 0 0 0
 95 0 0 1 0 0 0 1 0
 110 0 0 0 0 0 0 1 0
 115 0 0 0 0 0 0 0 0
 120 0 0 0 1 0 0 0 0
 127 0 0 0 1 0 0 0 1
 140 0 0 0 0 0 0 0 1
 147 0 0 0 0 0 0 0 0

Introductio
n

Let's assume that we have a design which requires us to have counters
of various width, but with the same functionality. Maybe we can assume
that we have a design which requires lots of instants of different depth
and width of RAMs of similar functionality. Normally what we do is
creating counters of different widths and then use them. The same rule
applies to the RAM we talked about.

But Verilog provides a powerful way to overcome this problem: it provides
us with something called parameter; these parameters are like constants
local to that particular module.

We can override the default values, either using defparam or by passing
a new set of parameters during instantiation. We call this parameter
overriding.

Parameters

A parameter is defined by Verilog as a constant value declared within the
module structure. The value can be used to define a set of attributes for
the module which can characterize its behavior as well as its physical
representation.

 Verilog Programming Guide

183

• Defined inside a module.
• Local scope.
• Maybe overridden at instantiation time.

o If multiple parameters are defined, they must be
overridden in the order they were defined. If an overriding
value is not specified, the default parameter declaration
values are used.

• Maybe changed using the defparam statement.

Parameter Override using defparam

 1 module secret_number;

 2 parameter my_secret = 0;
 3

 4 initial begin

 5 $display("My secret number is %d", my_secret);

 6 end
 7

 8 endmodule
 9

 10 module defparam_example();
 11

 12 defparam U0.my_secret = 11;

 13 defparam U1.my_secret = 22;
 14

 15 secret_number U0();

 16 secret_number U1();

 17

 18 endmodule

You could download file defparam_example.v here

Parameter Override during instantiating.

 1 module secret_number;

 2 parameter my_secret = 0;
 3

 4 initial begin

 5 $display("My secret number in module is %d", my_secret);

 6 end
 7

 8 endmodule
 9

http://www.asic-world.com/code/verilog_tutorial/defparam_example.v

 Verilog Programming Guide

184

 10 module param_overide_instance_example();
 11

 12 secret_number #(11) U0();

 13 secret_number #(22) U1();

 14

 15 endmodule

You could download file param_overide_instance_example.v here

Passing more than one parameter

 1 module ram_sp_sr_sw (

 2 clk , // Clock Input

 3 address , // Address Input

 4 data , // Data bi-directional

 5 cs , // Chip Select

 6 we , // Write Enable/Read Enable

 7 oe // Output Enable
 8);

 9

 10 parameter DATA_WIDTH = 8 ;

 11 parameter ADDR_WIDTH = 8 ;

 12 parameter RAM_DEPTH = 1 << ADDR_WIDTH;

 13 // Actual code of RAM here
 14

 15 endmodule

You could download file param_more_then_one.v here

 When instantiating more than the one parameter, parameter values
should be passed in the order they are declared in the sub module.

 1 module ram_controller ();//Some ports
 2

 3 // Controller Code
 4

 5 ram_sp_sr_sw #(16,8,256) ram(clk,address,data,cs,we,oe);

 6

 7 endmodule

You could download file param_more_then_one1.v here

Verilog 2001

 In Verilog 2001, the code above will work, but the new feature makes the
code more readable and error free.

 1 module ram_controller ();//Some ports

http://www.asic-world.com/code/verilog_tutorial/param_overide_instance_example.v
http://www.asic-world.com/code/verilog_tutorial/param_more_then_one.v
http://www.asic-world.com/code/verilog_tutorial/param_more_then_one1.v

 Verilog Programming Guide

185

 2

 3 ram_sp_sr_sw #(

 4 .DATA_WIDTH(16),

 5 .ADDR_WIDTH(8),

 6 .RAM_DEPTH(256)) ram(clk,address,data,cs,we,oe);

 7

 8 endmodule

You could download file param_more_then_one2.v here

 Was this copied from VHDL?

What is
logic
synthesis
?

Logic synthesis is the process of converting a high-level description of
design into an optimized gate-level representation. Logic synthesis uses
a standard cell library which have simple cells, such as basic logic gates
like and, or, and nor, or macro cells, such as adder, muxes, memory,
and flip-flops. Standard cells put together are called technology library.
Normally the technology library is known by the transistor size (0.18u,
90nm).

A circuit description is written in Hardware Description Language (HDL)
such as Verilog. The designer should first understand the architectural
description. Then he should consider design constraints such as timing,
area, testability, and power.

 We will see a typical design flow with a large example in the last chapter
of Verilog tutorial.

http://www.asic-world.com/code/verilog_tutorial/param_more_then_one2.v

 Verilog Programming Guide

186

Life before HDL (Logic synthesis)

As you must have experienced in college, everything (all the digital
circuits) is designed manually. Draw K-maps, optimize the logic, draw
the schematic. This is how engineers used to design digital logic circuits
in early days. Well this works fine as long as the design is a few hundred
gates.

Impact of HDL and Logic synthesis.

High-level design is less prone to human error because designs are
described at a higher level of abstraction. High-level design is done
without significant concern about design constraints. Conversion from
high-level design to gates is done by synthesis tools, using various
algorithms to optimize the design as a whole. This removes the problem
with varied designer styles for the different blocks in the design and
suboptimal designs. Logic synthesis tools allow technology independent
design. Design reuse is possible for technology-independent
descriptions.

What do we discuss here ?

When it comes to Verilog, the synthesis flow is the same as for the rest
of the languages. What we try to look in next few pages is how particular
code gets translated to gates. As you must have wondered while reading
earlier chapters, how could this be represented in Hardware ? An
example would be "delays". There is no way we could synthesize
delays, but of course we can add delay to particular signals by adding
buffers. But then this becomes too dependent on synthesis target
technology. (More on this in the VLSI section).

First we will look at the constructs that are not supported by synthesis
tools; the table below shows the constructs that are not supported by
the synthesis tool.

Constructs Not Supported in Synthesis

Construct Type Notes

initial Used only in test benches.

events
Events make more sense for syncing test bench

components.

real Real data type not supported.

time Time data type not supported.

 Verilog Programming Guide

187

force and release Force and release of data types not supported.

assign and deassign
assign and deassign of reg data types is not supported.

But assign on wire data type is supported.

fork join Use nonblocking assignments to get same effect.

primitives Only gate level primitives are supported.

table UDP and tables are not supported.

Example of Non-Synthesizable Verilog construct.

Any code that contains the above constructs are not synthesizable, but
within synthesizable constructs, bad coding could cause synthesis
issues. I have seen codes where engineers code a flip-flop with both
posedge of clock and negedge of clock in sensitivity list.

Then we have another common type of code, where one reg variable is
driven from more than one always block. Well it will surely cause
synthesis error.

Example - Initial Statement

 1 module synthesis_initial(
 2 clk,q,d);

 3 input clk,d;

 4 output q;

 5 reg q;
 6

 7 initial begin

 8 q <= 0;

 9 end
 10

 11 always @ (posedge clk)

 12 begin

 13 q <= d;

 14 end
 15

 16 endmodule

You could download file synthesis_initial.v here

Delays
 a = #10 b; This code is useful only for simulation purpose.

 Synthesis tool normally ignores such constructs, and just assumes that
there is no #10 in above statement, thus treating above code as

http://www.asic-world.com/code/verilog_tutorial/synthesis_initial.v

 Verilog Programming Guide

188

 a = b;

Comparison to X and Z are always ignored

 1 module synthesis_compare_xz (a,b);

 2 output a;

 3 input b;

 4 reg a;
 5

 6 always @ (b)

 7 begin

 8 if ((b == 1'bz) || (b == 1'bx)) begin

 9 a = 1;

 10 end else begin

 11 a = 0;

 12 end

 13 end
 14

 15 endmodule

You could download file synthesis_compare_xz.v here

There seems to be a common problem with all the design engineers new
to hardware. They normally tend to compare variables with X and Z. In
practice it is the worst thing to do, so please avoid comparing with X and
Z. Limit your design to two states, 0 and 1. Use tri-state only at chip IO
pads level. We will see this as an example in the next few pages.

Constructs Supported in Synthesis

Verilog is such a simple language; you could easily write code which is
easy to understand and easy to map to gates. Code which uses if, case
statements is simple and cause little headaches with synthesis tools.
But if you like fancy coding and like to have some trouble, ok don't be
scared, you could use them after you get some experience with Verilog.
Its great fun to use high level constructs, saves time.

The most common way to model any logic is to use either assign
statements or always blocks. An assign statement can be used for
modeling only combinational logic and always can be used for modeling
both combinational and sequential logic.

 Construct Type Keyword or Description Notes

http://www.asic-world.com/code/verilog_tutorial/synthesis_compare_xz.v

 Verilog Programming Guide

189

ports input, inout, output
Use inout only at IO

level.

parameters parameter
This makes design

more generic

module definition module

signals and variables wire, reg, tri Vectors are allowed

instantiation
module instances / primitive

gate instances

E.g.- nand (out,a,b),

bad idea to code RTL

this way.

function and tasks function , task
Timing constructs

ignored

procedural
always, if, else, case, casex,

casez

initial is not

supported

procedural blocks
begin, end, named blocks,

disable

Disabling of named

blocks allowed

data flow assign
Delay information is

ignored

named Blocks disable
Disabling of named

block supported.

loops for, while, forever

While and forever

loops must contain

@(posedge clk) or

@(negedge clk)

Operators and their Effect.

 One common problem that seems to occur is getting confused with
logical and reduction operators. So watch out.

Operator Type Operator Symbol Operation Performed

Arithmetic * Multiply
 / Division
 + Add
 - Subtract
 % Modulus
 + Unary plus
 - Unary minus

Logical ! Logical negation
 && Logical AND

 Verilog Programming Guide

190

 || Logical OR

Relational > Greater than
 < Less than
 >= Greater than or equal
 <= Less than or equal

Equality == Equality
 != inequality

Reduction & Bitwise AND
 ~& Bitwise NAND
 | Bitwise OR
 ~| Bitwise NOR
 ^ Bitwise XOR
 ^~ ~^ Bitwise XNOR

Shift >> Right shift
 << Left shift

Concatenation { } Concatenation

Conditional ? conditional

Logic
Circuit
Modeling

From what we have learnt in digital design, we know that there could be
only two types of digital circuits. One is combinational circuits and the
second is sequential circuits. There are very few rules that need to be
followed to get good synthesis output and avoid surprises.

Combinational Circuit Modeling using assign

Combinational circuits modeling in Verilog can be done using assign and
always blocks. Writing simple combinational circuits in Verilog using assign
statements is very straightforward, like in the example below

 assign y = (a&b) | (c^d);

Tri-state buffer

 Verilog Programming Guide

191

 1 module tri_buf (a,b,enable);

 2 input a;

 3 output b;

 4 input enable;

 5 wire a,enable;

 6 wire b;
 7

 8 assign b = (enable) ? a : 1'bz;
 9

 10 endmodule

You could download file tri_buf.v here

Mux

 1 module mux_21 (a,b,sel,y);

 2 input a, b;

 3 output y;

 4 input sel;

 5 wire y;
 6

 7 assign y = (sel) ? b : a;
 8

 9 endmodule

You could download file mux_21.v here

Simple Concatenation

http://www.asic-world.com/code/verilog_tutorial/tri_buf.v
http://www.asic-world.com/code/verilog_tutorial/mux_21.v

 Verilog Programming Guide

192

 1 module bus_con (a,b);

 2 input [3:0] a, b;

 3 output [7:0] y;

 4 wire [7:0] y;
 5

 6 assign y = {a,b};
 7

 8 endmodule

You could download file bus_con.v here

1 bit adder with carry

 1 module addbit (

 2 a , // first input

 3 b , // Second input

 4 ci , // Carry input

 5 sum , // sum output

 6 co // carry output
 7);

 8 //Input declaration

 9 input a;

 10 input b;

 11 input ci;

 12 //Ouput declaration

 13 output sum;

 14 output co;

 15 //Port Data types

 16 wire a;

 17 wire b;

 18 wire ci;

 19 wire sum;

 20 wire co;

 21 //Code starts here

http://www.asic-world.com/code/verilog_tutorial/bus_con.v

 Verilog Programming Guide

193

 22 assign {co,sum} = a + b + ci;
 23

 24 endmodule // End of Module addbit

You could download file addbit.v here

Multiply by 2

 1 module muliply (a,product);

 2 input [3:0] a;

 3 output [4:0] product;

 4 wire [4:0] product;
 5

 6 assign product = a << 1;
 7

 8 endmodule

You could download file multiply.v here

3 is to 8 decoder

 1 module decoder (in,out);

 2 input [2:0] in;

 3 output [7:0] out;

 4 wire [7:0] out;

 5 assign out = (in == 3'b000) ? 8'b0000_0001 :

 6 (in == 3'b001) ? 8'b0000_0010 :

 7 (in == 3'b010) ? 8'b0000_0100 :

 8 (in == 3'b011) ? 8'b0000_1000 :

 9 (in == 3'b100) ? 8'b0001_0000 :

 10 (in == 3'b101) ? 8'b0010_0000 :

 11 (in == 3'b110) ? 8'b0100_0000 :

 12 (in == 3'b111) ? 8'b1000_0000 : 8'h00;
 13

 14 endmodule

You could download file decoder.v here

Combinational Circuit Modeling using always

While modeling using always statements, there is the chance of getting a
latch after synthesis if care is not taken. (No one seems to like latches in
design, though they are faster, and take lesser transistor. This is due to the
fact that timing analysis tools always have problems with latches; glitch at
enable pin of latch is another problem).

http://www.asic-world.com/code/verilog_tutorial/addbit.v
http://www.asic-world.com/code/verilog_tutorial/multiply.v
http://www.asic-world.com/code/verilog_tutorial/decoder.v

 Verilog Programming Guide

194

One simple way to eliminate the latch with always statement is to always
drive 0 to the LHS variable in the beginning of always code as shown in the
code below.

3 is to 8 decoder using always

 1 module decoder_always (in,out);

 2 input [2:0] in;

 3 output [7:0] out;

 4 reg [7:0] out;
 5

 6 always @ (in)

 7 begin

 8 out = 0;

 9 case (in)

 10 3'b001 : out = 8'b0000_0001;

 11 3'b010 : out = 8'b0000_0010;

 12 3'b011 : out = 8'b0000_0100;

 13 3'b100 : out = 8'b0000_1000;

 14 3'b101 : out = 8'b0001_0000;

 15 3'b110 : out = 8'b0100_0000;

 16 3'b111 : out = 8'b1000_0000;

 17 endcase

 18 end
 19

 20 endmodule

You could download file decoder_always.v here

Sequential Circuit Modeling

Sequential logic circuits are modeled using edge sensitive elements in the
sensitive list of always blocks. Sequential logic can be modeled only using
always blocks. Normally we use nonblocking assignments for sequential
circuits.

Simple Flip-Flop

 1 module flif_flop (clk,reset, q, d);

 2 input clk, reset, d;

 3 output q;

 4 reg q;
 5

 6 always @ (posedge clk)

 7 begin

 8 if (reset == 1) begin

http://www.asic-world.com/code/verilog_tutorial/decoder_always.v

 Verilog Programming Guide

195

 9 q <= 0;

 10 end else begin

 11 q <= d;

 12 end

 13 end
 14

 15 endmodule

You could download file flip_flop.v here

Verilog Coding Style

If you look at the code above, you will see that I have imposed a coding
style that looks cool. Every company has got its own coding guidelines and
tools like linters to check for this coding guidelines. Below is a small list of
guidelines.

• Use meaningful names for signals and variables
• Don't mix level and edge sensitive elements in the same always

block
• Avoid mixing positive and negative edge-triggered flip-flops
• Use parentheses to optimize logic structure
• Use continuous assign statements for simple combo logic
• Use nonblocking for sequential and blocking for combo logic
• Don't mix blocking and nonblocking assignments in the same

always block (even if Design compiler supports them!!).
• Be careful with multiple assignments to the same variable
• Define if-else or case statements explicitly

 Note : Suggest if you want more details.

http://www.asic-world.com/code/verilog_tutorial/flip_flop.v

