
UNO Data Collector Project User Manual

Page 1

EARTH PEOPLE TECHNOLOGY, Inc

UNO DATA COLLECTOR PROJECT

User Manual

This manual describes the EPT USB-CPLD development system Data Collector

Project. It goes step by step providing the instructions to build this project. The

instructions include the Arduino code, CPLD code, and the Host PC coe.

Circuit designs, software and documentation are copyright © 2012, Earth People

Technology, Inc

Microsoft and Windows are both registered trademarks of Microsoft Corporation.

Altera is a trademark of the Altera Corporation. All other trademarks referenced herein

are the property of their respective owners and no trademark rights to the same are

claimed.

http://www.earthpeopletechnology.com/

http://www.earthpeopletechnology.com/

UNO Data Collector Project User Manual

Page 2

Table of Contents
1 The Development Process ... 3

1.1 Designing a Simple Data Collection Sampler .. 3
1.1.1 The Arduino Microcontroller Board ... 4

1.1.2 Create Data Generator ... 4
1.1.3 Select I/O’s for Fast Throughput on Arduino ... 4

1.1.4 Coding the Arduino Data Sampler .. 6
1.1.5 Building Arduino Project .. 8
1.1.6 Programming the Arduino... 11
1.1.7 CPLD Active Transfer Coding and Initiation ... 13
1.1.8 CPLD: Define the User Design. .. 14

1.1.9 CPLD: Compile/Synthesize the Project .. 32

1.1.10 CPLD: Program the CPLD.. 34
1.1.11 PC: Design the Project .. 35
1.1.12 PC: Coding the Project .. 36

1.1.13 PC: Compiling the Active Host Application ... 47
1.1.14 Connecting the Project Together ... 48

1.1.15 Testing the Project... 52

UNO Data Collector Project User Manual

Page 3

1 The Development Process
There is no standard for developing embedded electronics. The best method is the one

that works for the user. These methods can range from a top down approach where the

design is written down first and all code is written, then compile, execute and test. Or a

bottom up approach can be pursued where a small piece of the project is assembled and

verified (i.e. I2C communication to a sensor). Then the next piece is assembled and

verified (i.e. collect sensor data in a storage buffer) and connected to the first. And so

on, until the whole design is complete. Or any infinite combination of these two

extremes.

1.1 Designing a Simple Data Collection Sampler
The Data Collection Sampler is a very simple introductory project that will guide the

user in the creation of an overall design using the Arduino Programming Language,

Verilog HDL, and C# Language. These elements will run on the Arduino Platform,

EPT-570-AP-U2 CPLD, and a Windows 7 PC respectively.

The first order of business is to layout the design. Start with the Arduino, and create a

simple bit output using a random number generator. Next, use the EPT Active Transfer

Library to create a byte transfer module to read the byte from the Arduino and send it to

the Host PC. Finally, use EPT Active Host to accept the byte transfer from EPT Active

UNO Data Collector Project User Manual

Page 4

Transfer, and display in a textbox. This is just the hierarchical system level design. In

the following sections, we will fill in the above blocks.

1.1.1 The Arduino Microcontroller Board

 Using the features and capabilities of the Arduino development system, the user

will develop the source code using the “Wiring” programming language and download

the resulting binary code from the Processing development environment to the Flash

memory of the microcontroller.

1.1.2 Create Data Generator

To keep the design simple, no external data source will be used. We will create a data

source using the Arduino, then transmit this data to the EPT-570-AP board. To create

the data source, we will use the random() function. This function generates pseudo

random numbers from a seed value. We will give the randomSeed() function a fairly

random input using the value from the analogRead(). This will give different values

every time the random() function is called. We will limit the random number output

from the function to 8 bits. The random() function will be called once per iteration of

the loop() function.

The randomSeed() function must be called during the setup() function. It takes as input

parameter the output of the Analog Pin 1. The output of this Pin 1 will have a small

amount of random noise on it. Because of this noise, the randomSeed() function will

produce a different seed every time the sketch is initialized.

1.1.3 Select I/O’s for Fast Throughput on Arduino

An 8 bit port is used to connect the 8 bit byte from the random function output to the

input of the EPT-570-AP. There is also a one bit control line which will be used to

inform the CPLD that a byte is ready to be written to the USB.

UNO Data Collector Project User Manual

Page 5

Each port is controlled by three registers, which are also defined variables in the

Arduino language. The DDR register, determines whether the pin is an INPUT or

OUTPUT. The PORT register controls whether the pin is HIGH or LOW, and the PIN

register reads the state of INPUT pins set to input with pinMode(). The maps of the

ATmega328 chips show the ports.

DDR and PORT registers may be both written to, and read. PIN registers correspond to

the state of inputs and may only be read.

PORTD maps to Arduino digital pins 0 to 7

DDRD - The Port D Data Direction Register - read/write

PORTD - The Port D Data Register - read/write

PIND - The Port D Input Pins Register - read only

The ports and pins for the Data Collection Sampler project must be initialized in the

setup() function. The setup function will only run once, after each powerup or reset of

the Arduino board.

UNO Data Collector Project User Manual

Page 6

After the setup() function executes, the PORTD is ready to be assigned the results of

our random() function. And the A0 pin will be used to latch the value on PORTD pins

into the CPLD.

1.1.4 Coding the Arduino Data Sampler

Now that we have the data generator and the ports defined, we can add some delays in

the loop() function and make a simulated data collector. Because Start and Stop buttons

will be added to the C# Windows Form, the Data Collector code will need to monitor a

single pin output from the EPT-570-AP. This output pin (from the EPT-570-AP)

becomes an input to the Arduino and is used in conditional switch.

This code will sample the Start/Stop switch which is an output from the EPT-570-AP on

J10 PIN 1. On the Arduino, this is PIN 8 of the Digital pins. Each iteration of the loop()

function, the startStopBit variable stores the state of DigitalPin8. Then, a delay of 500

milliseconds is added. The delay() function pauses the program for the amount of time

(in milliseconds) specified as parameter. Next, the startStopBit is checked with a

conditional switch. If the bit is set, the conditional branch is entered and the random

number is sent to the EPT-570-AP. If the bit is not set, the end of the loop() function is

reached and it branches to the top of the loop().

We will also add an LED Pin that will blink so that we can have a visual indication that

the project is working.

We want to add a delay so that the data from the generated displays on the Windows PC

long enough for our eyes to verify that the data is updating correctly. This delay should

be one second in total. So, the data will change then stay stable in the textbox for one

second before changing again.

For the LED to blink correctly, it should turn on, delay for half a second then turn off

and delay for half a second. If we don’t use half second intervals for the LED blink, the

LED will appear to not change at all. It will look like it stays on all the time or off all

the time.

UNO Data Collector Project User Manual

Page 7

So, the code looks like this:

UNO Data Collector Project User Manual

Page 8

Notice that PORTD equals the return of random(255). The parameter passed to the

random() function is the maximum decimal value of the return value. In our case we

want the maximum value to be an 8 bit value, B11111111 = 0xff = 255(decimal). Also,

note that the A0 write enable signal for the CPLD has back to back instructions turning

it on then off immediately. Because the ATMega328 chip takes approximately 160

clock cycles to execute the digitalWrite() function and affect the Pin at A0, this

produces a write enable pulse of 10 microseconds.

RANDOM VALUERANDOM VALUE

A0 (WRITE ENABLE)

PORTD

10 us

The RANDOM VALUE will be stable before the A0(WRITE ENABLE) asserts thus

guaranteeing a successful transfer of data from Arduino to CPLD.

1.1.5 Building Arduino Project

Building the Arduino project is the process of converting (compiling) the code you just

wrote into machine level code that the processor can understand. The Arduino IDE is

the software tool that does the compiling. The machine level code is a set of basic

instructions that the processor uses to perform the functions the user code.

To compile your code,

 Open up the Arduino IDE

UNO Data Collector Project User Manual

Page 9

 Load your code

UNO Data Collector Project User Manual

 Page
10

 Click the Verify button

 The sketch will compile

UNO Data Collector Project User Manual

 Page
11

 If there are no errors, the compiling will complete successfully

Now we are done with compiling and ready to program the Arduino

1.1.6 Programming the Arduino

Programming the Arduino is the process of downloading the user’s compiled code into

the Flash memory of the Atmel ATMega328 chip. Once the code is downloaded, the

Arduino IDE resets the chip and the processor starts executing out of Flash memory.

To program the Arduino

 Connect the USB cable from PC to Arduino

 Load the Arduino USB driver according to the manual

 Plug in your board and wait for Windows to begin it's driver installation
process. After a few moments, the process will fail, despite its best efforts

 Click on the Start Menu, and open up the Control Panel.

 While in the Control Panel, navigate to System and Security. Next, click on
System. Once the System window is up, open the Device Manager.

 Look under Ports (COM & LPT). You should see an open port named "Arduino
UNO (COMxx)"

 Right click on the "Arduino UNO (COmxx)" port and choose the "Update Driver
Software" option.

 Next, choose the "Browse my computer for Driver software" option.

UNO Data Collector Project User Manual

 Page
12

 Finally, navigate to and select the Uno's driver file, named
"ArduinoUNO.inf", located in the "Drivers" folder of the Arduino Software
download (not the "FTDI USB Drivers" sub-directory).

 Windows will finish up the driver installation from there.

 Once the driver is loaded, we can set the COM Port. Click on Tools and select

Serial Port, then click the available port.

UNO Data Collector Project User Manual

 Page
13

 To load the code, click on the Upload button.

When the code has completed loading, the Arduino IDE will automatically command

the processor to start executing the code. The L LED will blink at one second intervals.

1.1.7 CPLD Active Transfer Coding and Initiation

 The EPT-570-AP will accept the data collected by the Arduino and transfer it to

the PC. It is designed to plug directly into the Arduino Uno and there is no need for

external wires to be added. The Active Transfer Library can be used to send the data to

the PC. This library has been designed to make it easy to transfer data to and from the

PC via the USB. The user must create some interface code between the incoming data

and the Active Transfer Library. We will now go through exercise of creating the CPLD

code for the Data Collector Sampler.

UNO Data Collector Project User Manual

 Page
14

1.1.8 CPLD: Define the User Design.

In this step we will define the user’s code and include modules from the EPT

Active Transfer Library. The Active Transfer Library contains a set of files with a

“.vqm” name extension which select particular operations to perform (e.g., byte

transfer, block transfer, trigger).. The active_transfer_library.vqm file must be included

in the top level file of the project. The function modules will connect to the

active_transfer_library and provide a path to connect user code to the library. All of

these files are available on the Earth People Technology website.

Figure 5. EPT Library EndTerm Modules

We will build our CPLD project using Quartus II software from Altera. The

primary file defining the user’s CPLD project is named “EPT_570_AP_U2_Top.v”. It

defines the user code and connects the active_transfer_library and active_transfer logic

functions. In order to route the pins of the Arduino to the CPLD, the Pin Planner tool is

used. This tool allows the user to match internal net names to the pins of the CPLD.

Our project needs to accept an 8 bit value on the J8 connector and a write enable

on Pin 1 of J9. For this, we can use the active_transfer.vqm module as the interface to

the active_transfer_library. It accepts a single byte and latches it with a single enable

net. Because the active_transfer_library runs at 66 MHz we will need to write some

code ensure that the slower A0 (write enable) signal from the Arduino can latch the data

into the active_transfer module.

Block_Transfer

Reads and Writes

Multi-Byte Block

EPT Library

Active_Trigger

Transmits Trigger

Signal

Single_Transfer

Reads and Writes a

Single Byte

UNO Data Collector Project User Manual

 Page
15

CPLD: Coding up the DesignThe first thing to do is to create a top level file for the

project. The top level file will include the input and outputs for the CPLD. These are

declared according to the Verilog syntax rules. We won’t go through all the rules of

Verilog here, but feel free to explore the language more thoroughly at

www.asic-world.com/verilog/

We need to add the inputs and outputs for active_transfer_library, user code, leds, and

switches. Each port is described as input, output or inout. It is followed by the net type

wire or reg. If it is a vector, the array description must be added.

http://www.asic-world.com/verilog
http://www.asic-world.com/verilog

UNO Data Collector Project User Manual

 Page
16

UNO Data Collector Project User Manual

 Page
17

Next, the parameter’s are defined. These are used as constants in the user code.

UNO Data Collector Project User Manual

 Page
18

Next is the Internal Signal and Register Declarations.

UNO Data Collector Project User Manual

 Page
19

UNO Data Collector Project User Manual

 Page
20

Next, add the assignments. These assignments will set the direction of the bus

transceivers that interface to the Arduino I/O’s. The transceivers also include an output

enable bit.

The reset signal is generated by a counter that starts counting upon power up. When the

counter reaches GLOBAL_RESET_COUNT.

UNO Data Collector Project User Manual

 Page
21

The four LED’s are set by the bottom four bits of the active_trigger output register.

These trigger outputs can be set by using a function in the Active_Host DLL on the PC.

The Data Collector project will use LED3 to indicate the state of the Start/Stop signal.

UNO Data Collector Project User Manual

 Page
22

The two user switches are connected to the input trigger register. Pressing a switch will

send a trigger to the PC to be decoded by the Active_Host DLL.

UNO Data Collector Project User Manual

 Page
23

Next, we will add the transfer detection signal from the Arduino. This block will require

three registers.

 transfer_write_reg –This is a latch register to hold the state of the A0(Write

Enable)

 transfer_write –This register is used to start the active_transfer single byte write

to the PC.

 transfer_write_byte –This is an 8 bit register to hold the value of the Data

Collection output.

This block will compare the input signal on TRIGGER_IN_LOW[1] to a high. The

TRIGGER_IN_LOW[1] pin is routed to Pin 1 of J9 which is routed to the A0(Write

Enable) of the Arduino Data Collector. When this bit goes high, the priority encoder

goes into statement 1 and sets transfer_write_reg and transfer_write high and latches the

value on the LB_UPPER[7:0] pins to the transfer_write_byte register. By setting

transfer_write_reg high, the priority encoder goes into statement 2 which will set

transfer_write register to low and stay in statement 2 of the priority encoder. The back

to back high and low on the transfer_write register will cause the active_transfer

module to latch the value of transfer_write_byte into the active_transfer_library module

and sets up the byte transfer to the PC. When the TRIGGER_IN_LOW[1] -A0(Write

Enable) pin goes low, the encoder will reset transfer_write_reg and transfer_write to

UNO Data Collector Project User Manual

 Page
24

low. The encoder goes back to waiting for the TRIGGER_IN_LOW[1] -A0(Write

Enable) to assert high.

This block of code takes care of reading the random word from the Arduino using the

A0(Write Enable) Pin. However, because the Arduino is expecting a Start/Stop bit on

Digital Pin8, the CPLD code has to provide this bit. This presents a problem, the EPT-

570-AP has 3 eight bit bi-directional ports. Which means each port is has a direction

which is either input or ouput at a given time. However, the ports can be switched

between input and output at any time. Two of the three ports must be used as inputs into

the CPLD for the random word and the A0(Write Enable) Pin. So, the third port can be

used as the output port.

UNO Data Collector Project User Manual

 Page
25

XIOH

AD

XIOL

START-STOP SIGNAL

This, however, causes another problem! The Arduino XIOH connector needs to output

the Amber LED state. So, if one pin on the connector needs to be an output, the EPT-

570-AP port on J10 (XIOH) cannot be an output! This would interfere with the turning

on and turning off of the LED.

UNO Data Collector Project User Manual

 Page
26

EPT-570-AP NEEDS TO OUTPUT START-
STOP SIGNAL TO THE ARDUINO

EPT-570-AP
ARDUINO

So, we can fix this problem by noting that the 8 bit bi-directional ports on the EPT-570-

AP have Output Enables that allow the CPLD to “float” the signals of the port at any

time. By floating the port, we can multiplex the signals of the port. When we need to

drive the signals from the EPT-570-AP port to the Arduino, we turn on the Output

Enables of the port. And when we need to let the Arduino drive its signals, we turn off

the Output Enables of the port.

UNO Data Collector Project User Manual

 Page
27

In the reset section of the synchronous block, we turn the Direction bit to “B to A”

TR_DIR_1 <= 1‘b0;

and the Output Enable on.

TR_OE_1 <= 1’b0; (Output Enables are asserted with a zero)

The start_stop_cntrl signal is set by using the TRANSFER_CONTROL state machine

in the following section. So, if the start_stop_cntrl signal is set, the Output Enable is

turned on and the signal will appear on DigitalPin8 on the Arduino XIOH connector. As

the Data Collector code cycles through its loop() function, it will cause the if statement

to branch into its conditional statement. The Data Collector code will assert the

A0(Write Enable) Pin in its conditional statement. The A0(Write Enable) Pin will cause

the CPLD code to enter into its first conditional statement. This first statement turns off

the Output Enables of the Port J10. With the Port turned off, the Arduino can set the

LED on when it executes its code. When the A0(Write Enable) Pin is de-asserted, the

Output Enable of Port J10 is turned back on and the whole process can start over.

Next, we add a TRANSFER_CONTROL state machine to read the Control Register

from the Host PC using the active_transfer EndTerm. This state machine will decode

the 8 bit control register only after a sequence of three 8 bit bytes in the order of 0x5a,

0xc3, 0x7e. The operation of the state machine is as follows.

 The TRANSFER_CONTROL state machine will stay in the idle state of the

parallel encoder until a byte from the active_transfer transfer_to_device register

receives a 0x5a.

 This will cause the transfer_control_state to be changed to

TRANSFER_CONTROL_HDR1.

 The state machine will stay in the TRANSFER_CONTROL_HDR1 state until

the next byte is read from the active_transfer.

UNO Data Collector Project User Manual

 Page
28

 If the byte from transfer_to_device is a 0xc3, the transfer_control_state will be

changed to TRANSFER_CONTROL_HDR2.

 If the byte from transfer_to_device is not a 0xc3, the transfer_control_state will

go back to idle.

 In the TRANSFER_CONTROL_HDR2 state , the state machine will stay in this

state until the next byte from the active_transfer is received.

 If the byte from transfer_to_device is a 0x7e, the transfer_control_state will be

changed to TRANSFER_DECODE_BYTE.

 If the byte from transfer_to_device is not a 0x7e, the transfer_control_state will

go back to idle.

 In the TRANSFER_DECODE_BYTE state , the state machine will stay in this

state until the next byte from the active_transfer.

 The next byte transferred from active_transfer will be decoded as the Control

Register.

The bits of the Control Register are defined below.

Register Bits Description Assertion

Control 0 Start Stop Cntrl High

1 Not Used

2 LED Reset High

3 Switch Reset High

4 Transfer In Loop Back High

5 Not Used

6 Not Used

7 Not Used

7 Not Used

UNO Data Collector Project User Manual

 Page
29

UNO Data Collector Project User Manual

 Page
30

Next, up is the instantiation for the active_transfer_library. The ports include the input

and output pins and the two buses that connect the active modules. These buses are the

input UC_IN[23:0] and output UC_OUT[21:0].

UNO Data Collector Project User Manual

 Page
31

Finally, we instantiate the Active EndTerms. For the Data Collection project, we only

need active_transfer and active_trigger EndTerms. The uc_out port for both modules

must be shared. Since they both drive this bus, a bus wide wired-or circuit is used so

that they don’t drive each other. The active_transfer EndTerm has a port for the address

(uc_addr). This allows the PC to address up to 8 different modules. Just add a three bit

address to this port and the PC must add this same address to communicate with this

module.

UNO Data Collector Project User Manual

 Page
32

Next, we are ready to compile and synthesize.

1.1.9 CPLD: Compile/Synthesize the Project

The Quartus II application will compile/ synthesize the user code,

active_transfer_library, and the active EndTerms. The result of this step is a file

containing the CPLD code with “*.pof” name First, we need to create a project in the

Quartus II environment. Follow the directions in the section: “1.7 Compiling,

Synthesizing, and Programming CPLD”. Follow the steps up to Add Files. At the Add

Files box, click on the Browse button and navigate to the project Data Collector install

folder in the dialog box. Add the files:

UNO Data Collector Project User Manual

 Page
33

Continue following the instructions by adding a device and finishing the project

instantiation. Then, bring up the Pin Planner.

 Under Assignments, Select Import Assignments.

 At the Import Assignment dialog box, browse to the folder with the Quartus

Specification File on the EPT USB-CPLD Development System CD. Select the

“EPT_570_AP_U2_Top.qsf” file.

 Click Ok. Under Assignments, Select Pin Planner. Verify the pins have been

imported correctly.

Exit the Pin Planner, and select the Start Compilation button.

UNO Data Collector Project User Manual

 Page
34

Click Ok then re-run the Compile process. After successful completion, the screen

should look like the following:

If the synthesis fails, you will see the failure message in the message window.

Note that in addition to fatal errors, the compile process can produce “warnings” which

do not necessarily prevent execution of the code but which should be corrected

eventually.

At this point the project has been successfully compiled, synthesized and a

programming file has been produced. See the next section on how to program the

CPLD.

1.1.10 CPLD: Program the CPLD

The final step is programming the “*.pof” file into the CPLD. Follow the

section: “Programming the CPLD”.

 Connect the EPT-570-AP to the PC,

 Open up Quartus II,

 Open the programmer tool

UNO Data Collector Project User Manual

 Page
35

 In the upper left corner of the Programmer Tool, there is a button labeled

“Hardware Setup”. Verify that EPT-Blaster v1.3” has been selected. If not,

go to the section JTAG DLL Insert to Quartus II and follow the directions.

 Check the box under Program/Configure

 Click the Start button.

When the programming is complete, the Progress bar will indicate success.

At this point, the EPT-570-AP is programmed and ready for use.

1.1.11 PC: Design the Project

The final piece of the Data Collection Sampler is the PC application. This application

will fetch the data from the CPLD of the EPT-570-AP and display it on the screen. It

includes user code, windows form, and the Active_Host DLL.

The Active_Host DLL is designed to transfer data from the CPLD when it becomes

available. The data will be stored into local memory of the PC, and an event will be

triggered to inform the user code that data is available from the addressed module of the

CPLD. This method, from the user code on the PC, makes the data transfer transparent.

The data just appears in memory and the user code will direct the data to a textbox on

the Windows Form.

The Data Collector project will perform the following functions.

UNO Data Collector Project User Manual

 Page
36

 Find EPT-570-AP Device.

 Open EPT-570-AP Device.

 Start the Arduino data collection process.

 Wait for data from EPT-570-AP.

 Display data from EPT-570-AP in textbox.

1.1.12 PC: Coding the Project

The user code is based on the .NET Framework and written in C#. The language

is great for beginners as it is a subset of the C++ language. It has the look and feel of the

familiar C language but adds the ease of use of classes, inheritance and method

overloading. C# is an event based language which changes the method of writing code

for this project. See the section “1.1 Assembling, Building, and Executing a .NET

Project on the PC” for a better description of event based language programming.

To start the project, follow the section “1.1 Assembling, Building, and

Executing a .NET Project on the PC”. Use the wizard to create project called

“Data_Collector”. When the wizard completes, the C# Express main window will look

like the following.

These statements setup the namespace and the class for the project. There are several

other files that are created by the wizard such as Form1.Designer.cs, Program.cs,

Form1.resx. We don’t need to go into these support files, we will just focus on the

Form1.cs as this is where all the user code goes.

The project environment must be set up correctly in order to produce an application that

runs correctly on the target platform. First, we need tell C# Express to produce 64 bit

UNO Data Collector Project User Manual

 Page
37

code if we are running on a x64 platform. Go to Tools->Settings and select Expert

Settings

Go to Tools->Options, locate the “Show all settings” check box. Check the box.

In the window on the left, go to “Projects and Solutions”. Locate the “Show advanced

build configurations” check box. Check the box.

UNO Data Collector Project User Manual

 Page
38

Go to Build->Configuration Manager.

In the Configuration Manager window, locate the “Active solution platform:” label,

select “New” from the drop down box.

UNO Data Collector Project User Manual

 Page
39

In the New Solution Platform window, click on the drop down box under “Type or

select the new platform:”. Select “x64”.

Click the Ok button. Verify that the “Active Solution Platform” and the “Platform” tab

are both showing “x64”.

UNO Data Collector Project User Manual

 Page
40

Click Close.

Then, using the Solution Explorer, you can right click on the project, select Properties

and click on the Build tab on the right of the properties window.

Verify that the “Platform:” label has “Active (x64)” selected from the drop down box.

Next, unsafe code needs to be allowed so that C# can be passed pointer values from the

Active Host. Right click on the “Data Collector” project in the Solution Explorer. Select

Properties.

UNO Data Collector Project User Manual

 Page
41

Click on the Build tab and locate the “Allow unsafe code” check box. Check the box

Now we are ready to start coding.

Next, we add two classes for our device. One class stores the information useful for our

device for Transmit to the EndTerms such as, address of module, length of transfer etc.

UNO Data Collector Project User Manual

 Page
42

The next class is used to store parameters for receiving data from the device.

The first function called when the Windows Form loads up is the

Data_Collector_Load(). This function is called automatically upon the completion of

the Windows Form, so there is no need to do anything to call it. Once this function is

called, it in turn calls the ListDevices().

The ListDevices() function calls the EPT_AH_Open() function to load up the

ActiveHost Dll. Next, it calls EPT_AH_QueryDevices() which searches through the

registry files to determine the number of EPT devices attached to the PC. Next,

EPT_AH_GetDeviceName() is called inside a for loop to return the ASCII name of

each device attached to the PC. It will automatically populate the combo box,

cmbDevList with all the EPT devices it finds.

UNO Data Collector Project User Manual

 Page
43

The user will select the device from the drop down combo box. This value can be sent

to the OpenDevice() function using the button Click of the Open button.

The device_index variable is used to store the index of the device selected from the

combo box. This variable is passed into the EPT_AH_OpenDeviceByIndex(). This

UNO Data Collector Project User Manual

 Page
44

process is started by the user clicking on the “Open” button. If the function is

successful, the device name is displayed in the label, labelDeviceCnt. Next, the device

is made the active device and the call back function is registered using the

RegisterCallBack() function. Finally, the Open button is grayed out and the Close

button is made active.

Next, the callback function is populated. This function will be called from the Active

Host dll. When the EPT Device has transferred data to the PC, the callback function

will do something with the data and command.

UNO Data Collector Project User Manual

 Page
45

Because the callback function communicates directly with the dll and must pass

pointers from the dll to the C#, marshaling must be used. Marshaling is an advanced

topic and will not be covered in this manual.

When EPTReadFunction() callback is called and passed parameters from the Active

Host dll, it populates the EPTReceiveData object. It then calls EPTParseReceive()

function. This function uses a case statement to call the TransferOutReceive() function.

TransferOut Receive() creates a string from the EPTReceiveData.Payload parameter.

Then sends the string to the textbox, tbDataBytes.

UNO Data Collector Project User Manual

 Page
46

Controls such as buttons are added to the Form1.cs[Design] window which allow

turning on and off signals. These include

 btnWriteByte

 btnTransferReset

 btnOk

 btnClose

 btnResetBlock

Refer to section 1.6.4 Adding Controls to the Project for details about using the

ToolBox to place controls on a design. The btnWriteByte click event calls the

EPT_AH_SendTransferControlByte(). This function is used to turn on/off bits in the

Control Register in the CPLD code. The btnWriteByte will set the start_stop_cntrl

signal in the CPLD to one. This signal starts the Arduino Data Collector sending its

random word to the CPLD.

The btnTransferReset sets the start_stop_cntrl bit in the Control Register to zero. This

action will cause the Arduino Data Collector to stop sending the random word to the

CPLD.

The btnResetBlock button will clear the tbDataBytes textblock. The Clear() method is

inherited from the textbox class.

UNO Data Collector Project User Manual

 Page
47

The btnOk and btnClose buttons are used to end the application. It calls the function

EPT_AH_CloseDeviceByIndex() to remove the device from the Active Host dll. The

buttons btnOpen and btnClose have their Enabled parameter set to true and false

respectively. The Enabled parameter controls whether the button is allowed to launch an

event or not. If it is not enabled, the button is grayed out. At the end of each click event,

the Application.Exit() method is called. This exits the form.

This is all that is needed for the Data Collector project. The Arduino will generate a

random 8 bit word. It then transmits that word to the CPLD using the A0

(WRITE_ENABLE) signal. The CPLD transmits the 8 bit word to the PC using the

ACTIVE TRANSFER module of the Active_Transfer Library. The dll reads the 8 bit

word into local memory. It then calls the Callback function, EPTReadFunction. The 8

bit is finally displayed to screen using the MessageBox.Show().

1.1.13 PC: Compiling the Active Host Application

Building the Data_Collector project will compile the code in the project and produce an

executable file. It will link all of the functions declared in the opening of the

Data_Collector Class with the Active Host dll. The project will also automatically link

the FTD2XX.dll to the object code. To build the project, go to Debug->Build Solution.

UNO Data Collector Project User Manual

 Page
48

The C# Express compiler will start the building process. If there are no errors with code

syntax, function usage, or linking, then the environment responds with “Build

Succeeded”.

If the build fails, you will have to examine each error in the “Error List” and fix it

accordingly. If you cannot fix the error using troubleshooting methods, post a topic in

the Earth People Technology Forum. All topics will be answered by a member of the

technical staff as soon as possible.

At this point, the environment has produced an executable file and is ready for testing.

Next, we will connect everything together and see it collect data and display it.

1.1.14 Connecting the Project Together

Now we will connect the Arduino, EPT 570-AP-U2, and the PC to make a Data

Collector. First, connect a USB cable from a USB port on the PC to the Arduino.

Second, connect a USB cable from a open USB port on the PC to the EPT 570-AP-U2.

UNO Data Collector Project User Manual

 Page
49

Next, open the Arduino IDE and select File->Open and select your sketch created

earlier, Arduino_Data_Collector_Code.ino.

Select the file and click Open. The sketch will now populate the Arduino IDE window.

Compile and Download the sketch into the Arduino microcontroller using the Upload

button.

UNO Data Collector Project User Manual

 Page
50

The Arduino IDE will compile the project, then transmit the machine level code into the

ATMega328 SRAM to start the program. When this is complete, the Yellow L LED

will blink about once per second.

If this LED is blinking at the rate of once per second, the Arduino and the Data

Collector project are ready for the EPT 570-AP-U2 code.

The CPLD should already be programmed with its Data Collector Project. If it isn’t,

follow the instructions in section 3.1.10.

UNO Data Collector Project User Manual

 Page
51

Open the EPT Data Collector on the PC by browsing to the Data Collector project

folder. Locate the executable in the \bin\x64\Release folder.

Initiate the application by double clicking the application icon in the \Release folder of

the project. The application will open and automatically load the Active Host dll. The

application will locate the EPT 570-AP-U2 device. Next, the combo box at the top will

be populated with the name of the device.

EPT USB <-> JTAG&Serial Cable B

Select the EPT 570-AP device and click the Open button. If the Active Host application

connects to the device, a label will indicate “Device Connected”. Next, select the

address of the Active Transfer module in the CPLD. In our case it is “2”.

UNO Data Collector Project User Manual

 Page
52

EPT USB <-> JTAG&Serial Cab

1.1.15 Testing the Project

To test our Data Collector project, just click on the Start button. As soon as the device

connects, the data from the Arduino will appear in the received data textBox.

EPT USB <-> JTAG&Serial Cab

And that’s all there is to the Data Collector Project. It’s up to the user to use this

project as a base to create much larger projects. You can easily make a volt meter using

this project by turning off the Random number generator in the Arduino and reading the

UNO Data Collector Project User Manual

 Page
53

Analog Pins. Also, reformat the textBox display that it shows in decimal instead of the

Hexadecimal display.

