
 Digital To Analog Converter User Manual

Page 1

EARTH PEOPLE TECHNOLOGY

 EPT-4901-DA-S1 Digital To Analog Converter Board

User Manual

The EPT-4901-DA-S1 is a single channel eight bit DAC. It includes a potentiometer which varies the

voltage applied to the VREF pin of the DAC. This provides an amplitude control for the output of the

DAC. The SPI interface allows easy connection with an Arduino using the SPI library. There is a

power indicator Green LED to indicate the board is powered. It has Headers that are surface mounted

on the bottom of the board. Access to the SPI bus is made using these header pins. The DAC output is

available on the under board headers or the top facing header. The board also includes a 8Mb Flash

chip which utilized only in the +5V mode.

The EPT-4901-DA-S1 is designed to provide an analog output for any Arduino board. A 20KΩ

potentiometer is connected to the VREF pin. This varies the voltage applied to the VREF pin and

provides amplitude control for the analog output voltage. The MCP4901 DAC chip will convert any

eight bit digital word into an analog voltage. The settling time for the chip is 4.5µseconds. The output

analog voltage can reproduce a sine wave of approximately 800Hz.

Using the EPT-4901-DA-S1
This board is highly compatible with the Arduino library. Include the “SPI.h” library in your sketch

and call the “SPI.Transfer” function. There are no registers to set and no registers to read from in the

MCP4901. The chip has a maximum SPI clock frequency of:

• 20MHz

 Digital To Analog Converter User Manual

Page 2

It requires to eight bit bytes to be written to the chip in order to perform a Digital to Analog

conversion.

Register Set

There is only one register accessible on the MCP4901, Write Command Register.

Bit

15

Bit

14

Bit

13

Bit

12

Bit

11

Bit

10

Bit

9

Bit

8

Bit

7

Bit

6

Bit

5

Bit

4

Bit

3

Bit

2

Bit

1

Bit

0

0 BUF GA SHD

N
D7 D6 D5 D4 D3 D2 D1 D0 X X X X

Where:

bit 15

0 = Write to DAC register

1 = Ignore this command

bit 14 BUF: VREF Input Buffer Control bit

1 = Buffered

0 = Unbuffered

bit 13 GA: Output Gain Selection bit

1 = 1x (VOUT = VREF * D/256)

0 = 2x (VOUT = 2 * VREF * D/256)

bit 12 SHDN: Output Shutdown Control bit

1 = Active mode operation. VOUT is available.

0 = Shutdown the device. Analog output is not available. VOUT pin is connected to 500

k (typical)

bit 11-0 D11:D0: DAC Input Data bits. Bit x is ignored.

 Digital To Analog Converter User Manual

Page 3

EPT-4901-DA-S1 and Arduino Programming
The Arduino IDE makes coding the MCP4901 DAC quite easy. Everything needed to communicate

with the DAC is in the “SPI” library. Just include the “SPI.h” file in your Arduino sketch. Connect

EPT-4901-DA-S1 to the Arduino and plug the USB cable into a port on the PC.

 Digital To Analog Converter User Manual

Page 4

A simple code example to output a Sine Wave:

 /*

DAC Out 5V

Platform: Arduino Mini

*/

#include "EPT_SineTool.h"

#include <SPI.h>

//DAC Configuration Register Bits

#define DAC_WRITE 0x00 //Bit 15: 0 to Write to DAC register

#define DAC_BUFFER 0x40 //Bit 14: 1 to Buffer VREF

#define DAC_GAIN_SELECT 0x20 //Bit 13: 1 to set Gain to 1x

 Digital To Analog Converter User Manual

Page 5

#define DAC_SHDN 0x10 //Bit 12: 1 to set Active Mode operation

const int DACSelectPin = 10;

unsigned char DACConfigAndCountValue;

unsigned char DACCountHighValue;

unsigned char DACCountLowValue;

unsigned char byteToSendToDAC;

unsigned char sineWaveIndex;

unsigned char upperByteForDAC;

unsigned char lowerByteForDAC;

void setup() {

 pinMode (DACSelectPin, OUTPUT);

 DACConfigAndCountValue = DAC_WRITE | DAC_BUFFER | DAC_GAIN_SELECT |

 DAC_SHDN;

 DACCountHighValue = 0;

 DACCountLowValue = 0;

 byteToSendToDAC = 0;

 sineWaveIndex = 0;

 upperByteForDAC = 0;

 lowerByteForDAC = 0;

 //Initialize SPI

 SPI.begin();

 Digital To Analog Converter User Manual

Page 6

 //Initialize the Sine Wave Tool

 EPT_SineToolInit();

 //Initialize the Debug Port

 //Serial.begin(115200);

}

void loop()

{

 //Select Sine Wave data value

 byteToSendToDAC = EPT_SineToolData(sineWaveIndex);

 //delay(1);

 //Set the upper byte to send to the DAC

 DACCountHighValue = byteToSendToDAC>>4;

 upperByteForDAC = DACConfigAndCountValue | DACCountHighValue;

 //Set the lower byte to send to the DAC

 lowerByteForDAC = byteToSendToDAC<<4;

 //Select the DAC chip;

 digitalWrite(DACSelectPin, LOW);

 //Send in the address and value via SPI:

 SPI.transfer(upperByteForDAC);

 //Send Header Byte 1

 Digital To Analog Converter User Manual

Page 7

 SPI.transfer(lowerByteForDAC);

 //Take the SS pin high to de-select the DAC chip;

 digitalWrite(DACSelectPin, HIGH);

 //delay the sine wave;

 EPT_SineToolDelay(0);

 //Update the sine wave index

 sineWaveIndex += 1;

}

There are two files that are required from EPT to prepare the sine wave:

• EPT_SineTool.cpp

• EPT_SineTool.h

These files provide a lookup table for the correct sine wave output per given unit time. The frequency

of the sine wave can be modified by adding a delay time to each fetch cycle of the 255 sample read

cycle.

